Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Res ; 95(1): 102-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37563452

RESUMO

BACKGROUND: The aim of the study was to characterize molecular diagnoses in patients with childhood-onset progressive neurological disorders of suspected genetic etiology. METHODS: We studied 48 probands (age range from newborn to 17 years old) with progressive neurological disorders of unknown etiology from the largest pediatric neurology clinic in Finland. Phenotypes included encephalopathy (54%), neuromuscular disorders (33%), movement disorders (11%), and one patient (2%) with hemiplegic migraine. All patients underwent whole-exome sequencing and disease-causing genes were analyzed. RESULTS: We found 20 (42%) of the patients to have variants in genes previously associated with disease. Of these, 12 were previously reported disease-causing variants, whereas eight patients had a novel variant on a disease-causing gene: ATP7A, CHD2, PURA, PYCR2, SLC1A4, SPAST, TRIT1, and UPF3B. Genetics also enabled us to define atypical clinical presentations of Rett syndrome (MECP2) and Menkes disease (ATP7A). Except for one deletion, all findings were single-nucleotide variants (missense 72%, truncating 22%, splice-site 6%). Nearly half of the variants were de novo. CONCLUSIONS: The most common cause of childhood encephalopathies are de novo variants. Whole-exome sequencing, even singleton, proved to be an efficient tool to gain specific diagnoses and in finding de novo variants in a clinically heterogeneous group of childhood encephalopathies. IMPACT: Whole-exome sequencing is useful in heterogeneous pediatric neurology cohorts. Our article provides further evidence for and novel variants in several genes. De novo variants are an important cause of childhood encephalopathies.


Assuntos
Encefalopatias , Doenças do Sistema Nervoso , Neurologia , Síndrome de Rett , Recém-Nascido , Humanos , Criança , Adolescente , Doenças do Sistema Nervoso/genética , Fenótipo , Espastina/genética , Proteínas de Ligação a RNA/genética
2.
Brain ; 146(12): 5031-5043, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517035

RESUMO

MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 ± 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'.


Assuntos
Catarata , Epilepsia Generalizada , Epilepsia , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Feminino , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Epilepsia/genética , Cerebelo/patologia , Transtornos do Neurodesenvolvimento/genética , Epilepsia Generalizada/patologia , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/genética , Atrofia/patologia , Catarata/genética , Catarata/patologia , Fenótipo , Complexo Mediador/genética
3.
J Med Genet ; 60(1): 65-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34872991

RESUMO

BACKGROUND: Large-scale mitochondrial DNA deletions (LMD) are a common genetic cause of mitochondrial disease and give rise to a wide range of clinical features. Lack of longitudinal data means the natural history remains unclear. This study was undertaken to describe the clinical spectrum in a large cohort of patients with paediatric disease onset. METHODS: A retrospective multicentre study was performed in patients with clinical onset <16 years of age, diagnosed and followed in seven European mitochondrial disease centres. RESULTS: A total of 80 patients were included. The average age at disease onset and at last examination was 10 and 31 years, respectively. The median time from disease onset to death was 11.5 years. Pearson syndrome was present in 21%, Kearns-Sayre syndrome spectrum disorder in 50% and progressive external ophthalmoplegia in 29% of patients. Haematological abnormalities were the hallmark of the disease in preschool children, while the most common presentations in older patients were ptosis and external ophthalmoplegia. Skeletal muscle involvement was found in 65% and exercise intolerance in 25% of the patients. Central nervous system involvement was frequent, with variable presence of ataxia (40%), cognitive involvement (36%) and stroke-like episodes (9%). Other common features were pigmentary retinopathy (46%), short stature (42%), hearing impairment (39%), cardiac disease (39%), diabetes mellitus (25%) and renal disease (19%). CONCLUSION: Our study provides new insights into the phenotypic spectrum of childhood-onset, LMD-associated syndromes. We found a wider spectrum of more prevalent multisystem involvement compared with previous studies, most likely related to a longer time of follow-up.


Assuntos
Síndrome de Kearns-Sayre , Doenças Musculares , Oftalmoplegia Externa Progressiva Crônica , Pré-Escolar , Humanos , Criança , Idoso , DNA Mitocondrial/genética , Síndrome de Kearns-Sayre/epidemiologia , Síndrome de Kearns-Sayre/genética , Oftalmoplegia Externa Progressiva Crônica/epidemiologia , Oftalmoplegia Externa Progressiva Crônica/genética , Doenças Musculares/genética , Progressão da Doença
4.
Neurogenetics ; 24(4): 291-301, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37606798

RESUMO

Charcot-Marie-Tooth disease (CMT) is a heterogeneous set of hereditary neuropathies whose genetic causes are not fully understood. Here, we characterize three previously unknown variants in PMP22 and assess their effect on the recently described potential CMT biomarkers' growth differentiation factor 15 (GDF15) and neurofilament light (NFL): first, a heterozygous PMP22 c.178G > A (p.Glu60Lys) in one mother-son pair with adult-onset mild axonal neuropathy. The variant led to abnormal splicing, confirmed in fibroblasts by reverse transcription PCR. Second, a de novo PMP22 c.35A > C (p.His12Pro), and third, a heterozygous 3.2 kb deletion predicting loss of exon 4. The latter two had severe CMT and ultrasonography showing strong nerve enlargement similar to a previous case of exon 4 loss due to a larger deletion. We further studied patients with PMP22 duplication (CMT1A) finding slightly elevated plasma NFL, as measured by the single molecule array immunoassay (SIMOA). In addition, plasma GDF15, as measured by ELISA, correlated with symptom severity for CMT1A. However, in the severely affected individuals with PMP22 exon 4 deletion or p.His12Pro, these biomarkers were within the range of variability of CMT1A and controls, although they had more pronounced nerve hypertrophy. This study adds p.His12Pro and confirms PMP22 exon 4 deletion as causes of severe CMT, whereas the previously unknown splice variant p.Glu60Lys leads to mild axonal neuropathy. Our results suggest that GDF15 and NFL do not distinguish CMT1A from advanced hypertrophic neuropathy caused by rare PMP22 variants.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Adulto , Humanos , Fator 15 de Diferenciação de Crescimento/genética , Filamentos Intermediários , Proteínas da Mielina/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/diagnóstico , Biomarcadores
5.
Ann Neurol ; 89(4): 828-833, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33443317

RESUMO

The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021;89:828-833.


Assuntos
Cerebelo/anormalidades , Deficiências do Desenvolvimento/genética , Distonia/genética , Complexo Mediador/genética , Malformações do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Catarata/genética , Criança , Pré-Escolar , Epilepsia/genética , Variação Genética , Humanos , Lactente , Fenótipo , Sequenciamento do Exoma
6.
J Inherit Metab Dis ; 44(2): 469-480, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32857451

RESUMO

The aim of this study was to compare the value of serum biomarkers, fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), with histological analysis of muscle in the diagnosis of mitochondrial disease. We collected 194 serum samples from patients with a suspected or known mitochondrial disease. Biomarkers were analyzed blinded using enzyme-labeled immunosorbent assay. Clinical data were collected using a structured questionnaire. Only 39% of patients with genetically verified mitochondrial disease had mitochondrial pathology in their muscle histology. In contrast, biomarkers were elevated in 62% of patients with genetically verified mitochondrial disease. Those with both biomarkers elevated had a muscle manifesting disorder and a defect affecting mitochondrial DNA expression. If at least one of the biomarkers was induced and the patient had a myopathic disease, a mitochondrial DNA expression disease was the cause with 94% probability. Among patients with biomarker analysis and muscle biopsy taken <12 months apart, a mitochondrial disorder would have been identified in 70% with analysis of FGF21 and GDF15 compared to 50% of patients whom could have been identified with muscle biopsy alone. Muscle findings were nondiagnostic in 72% (children) and 45% (adults). Induction of FGF21 and GDF15 suggest a mitochondrial etiology as an underlying cause of a muscle manifesting disease. Normal biomarker values do not, however, rule out a mitochondrial disorder, especially if the disease does not manifest in muscle. We suggest that FGF21 and GDF15 together should be first-line diagnostic investigations in mitochondrial disease complementing muscle biopsy.


Assuntos
DNA Mitocondrial/genética , Fatores de Crescimento de Fibroblastos/genética , Fator 15 de Diferenciação de Crescimento/genética , Doenças Mitocondriais/genética , Adolescente , Adulto , Biomarcadores/sangue , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/sangue , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Adulto Jovem
7.
Am J Hum Genet ; 101(5): 856-865, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100095

RESUMO

Approximately one in every 200 mammalian proteins is anchored to the cell membrane through a glycosylphosphatidylinositol (GPI) anchor. These proteins play important roles notably in neurological development and function. To date, more than 20 genes have been implicated in the biogenesis of GPI-anchored proteins. GPAA1 (glycosylphosphatidylinositol anchor attachment 1) is an essential component of the transamidase complex along with PIGK, PIGS, PIGT, and PIGU (phosphatidylinositol-glycan biosynthesis classes K, S, T, and U, respectively). This complex orchestrates the attachment of the GPI anchor to the C terminus of precursor proteins in the endoplasmic reticulum. Here, we report bi-allelic mutations in GPAA1 in ten individuals from five families. Using whole-exome sequencing, we identified two frameshift mutations (c.981_993del [p.Gln327Hisfs∗102] and c.920delG [p.Gly307Alafs∗11]), one intronic splicing mutation (c.1164+5C>T), and six missense mutations (c.152C>T [p.Ser51Leu], c.160_161delinsAA [p.Ala54Asn], c.527G>C [p.Trp176Ser], c.869T>C [p.Leu290Pro], c.872T>C [p.Leu291Pro], and c.1165G>C [p.Ala389Pro]). Most individuals presented with global developmental delay, hypotonia, early-onset seizures, cerebellar atrophy, and osteopenia. The splicing mutation was found to decrease GPAA1 mRNA. Moreover, flow-cytometry analysis of five available individual samples showed that several GPI-anchored proteins had decreased cell-surface abundance in leukocytes (FLAER, CD16, and CD59) or fibroblasts (CD73 and CD109). Transduction of fibroblasts with a lentivirus encoding the wild-type protein partially rescued the deficiency of GPI-anchored proteins. These findings highlight the role of the transamidase complex in the development and function of the cerebellum and the skeletal system.


Assuntos
Aciltransferases/genética , Atrofia/genética , Doenças Ósseas Metabólicas/genética , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Glicoproteínas de Membrana/genética , Mutação/genética , Adolescente , Adulto , Alelos , Cerebelo/patologia , Criança , Pré-Escolar , Exoma/genética , Feminino , Fibroblastos/patologia , Glicosilfosfatidilinositóis/genética , Humanos , Masculino , Hipotonia Muscular/genética , Linhagem , RNA Mensageiro/genética , Convulsões/genética
8.
J Inherit Metab Dis ; 43(4): 726-736, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32391929

RESUMO

BACKGROUND: Variants in POLG are one of the most common causes of inherited mitochondrial disease. Phenotypic classification of POLG disease has evolved haphazardly making it complicated and difficult to implement in everyday clinical practise. The aim of our study was to simplify the classification and facilitate better clinical recognition. METHODS: A multinational, retrospective study using data from 155 patients with POLG variants recruited from seven European countries. RESULTS: We describe the spectrum of clinical features associated with POLG variants in the largest known cohort of patients. While clinical features clearly form a continuum, stratifying patients simply according to age of onset-onset prior to age 12 years; onset between 12 and 40 years and onset after the age of 40 years, permitted us to identify clear phenotypic and prognostic differences. Prior to 12 years of age, liver involvement (87%), seizures (84%), and feeding difficulties (84%) were the major features. For those with onset between 12 and 40 years, ataxia (90%), peripheral neuropathy (84%), and seizures (71%) predominated, while for those with onset over 40 years, ptosis (95%), progressive external ophthalmoplegia (89%), and ataxia (58%) were the major clinical features. The earlier the onset the worse the prognosis. Patients with epilepsy and those with compound heterozygous variants carried significantly worse prognosis. CONCLUSION: Based on our data, we propose a simplified POLG disease classification, which can be used to guide diagnostic investigations and predict disease course.


Assuntos
DNA Polimerase gama/genética , Predisposição Genética para Doença/genética , Doenças Mitocondriais/classificação , Doenças Mitocondriais/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Europa (Continente) , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/mortalidade , Mutação , Estudos Retrospectivos , Análise de Sobrevida , Adulto Jovem
9.
Hum Mol Genet ; 26(17): 3352-3361, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28645153

RESUMO

Leigh syndrome is a severe infantile encephalopathy with an exceptionally variable genetic background. We studied the exome of a child manifesting with Leigh syndrome at one month of age and progressing to death by the age of 2.4 years, and identified novel compound heterozygous variants in PNPT1, encoding the polynucleotide phosphorylase (PNPase). Expression of the wild type PNPT1 in the subject's myoblasts functionally complemented the defects, and the pathogenicity was further supported by structural predictions and protein and RNA analyses. PNPase is a key enzyme in mitochondrial RNA metabolism, with suggested roles in mitochondrial RNA import and degradation. The variants were predicted to locate in the PNPase active site and disturb the RNA processing activity of the enzyme. The PNPase trimer formation was not affected, but specific RNA processing intermediates derived from mitochondrial transcripts of the ND6 subunit of Complex I, as well as small mRNA fragments, accumulated in the subject's myoblasts. Mitochondrial RNA processing mediated by the degradosome consisting of hSUV3 and PNPase is poorly characterized, and controversy on the role and location of PNPase within human mitochondria exists. Our evidence indicates that PNPase activity is essential for the correct maturation of the ND6 transcripts, and likely for the efficient removal of degradation intermediates. Loss of its activity will result in combined respiratory chain deficiency, and a classic respiratory chain-deficiency-associated disease, Leigh syndrome, indicating an essential role for the enzyme for normal function of the mitochondrial respiratory chain.


Assuntos
Exorribonucleases/genética , Exorribonucleases/metabolismo , Doença de Leigh/genética , Pré-Escolar , Exoma , Exorribonucleases/química , Feminino , Expressão Gênica , Humanos , Lactente , Recém-Nascido , Doença de Leigh/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Polirribonucleotídeo Nucleotidiltransferase , RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Mitocondrial
10.
Hum Mol Genet ; 26(8): 1432-1443, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158749

RESUMO

De novo mutations in ATAD3A (ATPase family AAA-domain containing protein 3A) were recently found to cause a neurological syndrome with developmental delay, hypotonia, spasticity, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. Using whole-exome sequencing, we identified a dominantly inherited heterozygous variant c.1064G > A (p.G355D) in ATAD3A in a mother presenting with hereditary spastic paraplegia (HSP) and axonal neuropathy and her son with dyskinetic cerebral palsy, both with disease onset in childhood. HSP is a clinically and genetically heterogeneous disorder of the upper motor neurons. Symptoms beginning in early childhood may resemble spastic cerebral palsy. The function of ATAD3A, a mitochondrial inner membrane AAA ATPase, is yet undefined. AAA ATPases form hexameric rings, which are catalytically dependent on the co-operation of the subunits. The dominant-negative patient mutation affects the Walker A motif, which is responsible for ATP binding in the AAA module of ATAD3A, and we show that the recombinant mutant ATAD3A protein has a markedly reduced ATPase activity. We further show that overexpression of the mutant ATAD3A fragments the mitochondrial network and induces lysosome mass. Similarly, we observed altered dynamics of the mitochondrial network and increased lysosomes in patient fibroblasts and neurons derived through differentiation of patient-specific induced pluripotent stem cells. These alterations were verified in patient fibroblasts to associate with upregulated basal autophagy through mTOR inactivation, resembling starvation. Mutations in ATAD3A can thus be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability. This finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity.


Assuntos
Adenosina Trifosfatases/genética , Paralisia Cerebral/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Paraplegia Espástica Hereditária/genética , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/biossíntese , Adolescente , Adulto , Axônios/metabolismo , Axônios/patologia , Paralisia Cerebral/patologia , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/biossíntese , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Proteínas Mitocondriais/biossíntese , Mutação , Paraplegia Espástica Hereditária/patologia , Serina-Treonina Quinases TOR/genética
11.
Am J Hum Genet ; 99(4): 860-876, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693233

RESUMO

Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.


Assuntos
Translocador 1 do Nucleotídeo Adenina/genética , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Genes Dominantes/genética , Doenças Mitocondriais/genética , Mutação , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Idade de Início , Arilamina N-Acetiltransferase/genética , Criança , Pré-Escolar , Transporte de Elétrons/genética , Exoma/genética , Feminino , Humanos , Lactente , Recém-Nascido , Isoenzimas/genética , Masculino , Doenças Mitocondriais/patologia , Músculo Esquelético/metabolismo
12.
Am J Hum Genet ; 99(3): 735-743, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27545679

RESUMO

SQSTM1 (sequestosome 1; also known as p62) encodes a multidomain scaffolding protein involved in various key cellular processes, including the removal of damaged mitochondria by its function as a selective autophagy receptor. Heterozygous variants in SQSTM1 have been associated with Paget disease of the bone and might contribute to neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Using exome sequencing, we identified three different biallelic loss-of-function variants in SQSTM1 in nine affected individuals from four families with a childhood- or adolescence-onset neurodegenerative disorder characterized by gait abnormalities, ataxia, dysarthria, dystonia, vertical gaze palsy, and cognitive decline. We confirmed absence of the SQSTM1/p62 protein in affected individuals' fibroblasts and found evidence of a defect in the early response to mitochondrial depolarization and autophagosome formation. Our findings expand the SQSTM1-associated phenotypic spectrum and lend further support to the concept of disturbed selective autophagy pathways in neurodegenerative diseases.


Assuntos
Ataxia/genética , Autofagia/genética , Distonia/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Proteína Sequestossoma-1/deficiência , Paralisia Supranuclear Progressiva/genética , Adolescente , Adulto , Idade de Início , Ataxia/complicações , Autofagossomos/metabolismo , Autofagossomos/patologia , Criança , Transtornos Cognitivos/genética , Disartria/complicações , Disartria/genética , Distonia/complicações , Feminino , Fibroblastos/metabolismo , Marcha/genética , Humanos , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/genética , Doenças Neurodegenerativas/complicações , Linhagem , Fenótipo , RNA Mensageiro/análise , Proteína Sequestossoma-1/genética , Paralisia Supranuclear Progressiva/complicações , Adulto Jovem
13.
J Med Genet ; 55(1): 21-27, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101127

RESUMO

BACKGROUND: Leigh syndrome is a phenotypically and genetically heterogeneous mitochondrial disorder. While some genetic defects are associated with well-described phenotypes, phenotype-genotype correlations in Leigh syndrome are not fully explored. OBJECTIVE: We aimed to identify phenotype-genotype correlations in Leigh syndrome in a large cohort of systematically evaluated patients. METHODS: We studied 96 patients with genetically confirmed Leigh syndrome diagnosed and followed in eight European centres specialising in mitochondrial diseases. RESULTS: We found that ataxia, ophthalmoplegia and cardiomyopathy were more prevalent among patients with mitochondrial DNA defects. Patients with mutations in MT-ND and NDUF genes with complex I deficiency shared common phenotypic features, such as early development of central nervous system disease, followed by high occurrence of cardiac and ocular manifestations. The cerebral cortex was affected in patients with NDUF mutations significantly more often than the rest of the cohort. Patients with the m.8993T>G mutation in MT-ATP6 gene had more severe clinical and radiological manifestations and poorer disease outcome compared with patients with the m.8993T>C mutation. CONCLUSION: Our study provides new insights into phenotype-genotype correlations in Leigh syndrome and particularly in patients with complex I deficiency and with defects in the mitochondrial ATP synthase.


Assuntos
Estudos de Associação Genética , Doença de Leigh/genética , Núcleo Celular/metabolismo , DNA/genética , DNA Mitocondrial/genética , Feminino , Seguimentos , Humanos , Lactente , Masculino , Mutação/genética , Fenótipo
14.
J Med Genet ; 55(8): 515-521, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29602790

RESUMO

BACKGROUND: Thymine kinase 2 (TK2) is a mitochondrial matrix protein encoded in nuclear DNA and phosphorylates the pyrimidine nucleosides: thymidine and deoxycytidine. Autosomal recessive TK2 mutations cause a spectrum of disease from infantile onset to adult onset manifesting primarily as myopathy. OBJECTIVE: To perform a retrospective natural history study of a large cohort of patients with TK2 deficiency. METHODS: The study was conducted by 42 investigators across 31 academic medical centres. RESULTS: We identified 92 patients with genetically confirmed diagnoses of TK2 deficiency: 67 from literature review and 25 unreported cases. Based on clinical and molecular genetics findings, we recognised three phenotypes with divergent survival: (1) infantile-onset myopathy (42.4%) with severe mitochondrial DNA (mtDNA) depletion, frequent neurological involvement and rapid progression to early mortality (median post-onset survival (POS) 1.00, CI 0.58 to 2.33 years); (2) childhood-onset myopathy (40.2%) with mtDNA depletion, moderate-to-severe progression of generalised weakness and median POS at least 13 years; and (3) late-onset myopathy (17.4%) with mild limb weakness at onset and slow progression to respiratory insufficiency with median POS of 23 years. Ophthalmoparesis and facial weakness are frequent in adults. Muscle biopsies show multiple mtDNA deletions often with mtDNA depletion. CONCLUSIONS: In TK2 deficiency, age at onset, rate of weakness progression and POS are important variables that define three clinical subtypes. Nervous system involvement often complicates the clinical course of the infantile-onset form while extraocular muscle and facial involvement are characteristic of the late-onset form. Our observations provide essential information for planning future clinical trials in this disorder.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas Mitocondriais/deficiência , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Timidina Quinase/deficiência , Adolescente , Adulto , Idade de Início , Idoso , Criança , Pré-Escolar , Feminino , Genes Recessivos , Testes Genéticos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Doenças Musculares/mortalidade , Mutação , Fenótipo , Estudos Retrospectivos , Análise de Sobrevida , Adulto Jovem
15.
J Med Genet ; 55(2): 104-113, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097605

RESUMO

BACKGROUND: De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. OBJECTIVES: To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. METHODS: Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. RESULTS: We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. CONCLUSION: We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity.


Assuntos
Proteínas de Ligação a DNA/genética , Face/anormalidades , Deficiência Intelectual/genética , Mutação , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Anormalidades do Olho/genética , Feminino , Estudos de Associação Genética , Humanos , Recém-Nascido , Hipotonia Muscular/etiologia , Hipotonia Muscular/genética , Gravidez , Homologia Estrutural de Proteína , Síndrome , Fatores de Transcrição/química
16.
Hum Mutat ; 39(4): 563-578, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29314548

RESUMO

In recent years, an increasing number of mitochondrial disorders have been associated with mutations in mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs), which are key enzymes of mitochondrial protein synthesis. Bi-allelic functional variants in VARS2, encoding the mitochondrial valyl tRNA-synthetase, were first reported in a patient with psychomotor delay and epilepsia partialis continua associated with an oxidative phosphorylation (OXPHOS) Complex I defect, before being described in a patient with a neonatal form of encephalocardiomyopathy. Here we provide a detailed genetic, clinical, and biochemical description of 13 patients, from nine unrelated families, harboring VARS2 mutations. All patients except one, who manifested with a less severe disease course, presented at birth exhibiting severe encephalomyopathy and cardiomyopathy. Features included hypotonia, psychomotor delay, seizures, feeding difficulty, abnormal cranial MRI, and elevated lactate. The biochemical phenotype comprised a combined Complex I and Complex IV OXPHOS defect in muscle, with patient fibroblasts displaying normal OXPHOS activity. Homology modeling supported the pathogenicity of VARS2 missense variants. The detailed description of this cohort further delineates our understanding of the clinical presentation associated with pathogenic VARS2 variants and we recommend that this gene should be considered in early-onset mitochondrial encephalomyopathies or encephalocardiomyopathies.


Assuntos
Antígenos HLA/genética , Encefalomiopatias Mitocondriais , ATPases Mitocondriais Próton-Translocadoras/deficiência , Valina-tRNA Ligase/genética , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Encefalomiopatias Mitocondriais/fisiopatologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação de Sentido Incorreto , Fosforilação Oxidativa , Filogenia
17.
Neurogenetics ; 19(1): 49-53, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29350304

RESUMO

Mutations in mitochondrial ATP synthase 6 (MT-ATP6) are a frequent cause of NARP (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) or Leigh syndromes, especially a point mutation at nucleotide position 8993. M.8969G>A is a rare MT-ATP6 mutation, previously reported only in three individuals, causing multisystem disorders with mitochondrial myopathy, lactic acidosis, and sideroblastic anemia or IgA nephropathy. We present two siblings with the m.8969G>A mutation and a novel, substantially milder phenotype with lactic acidosis, poor growth, and intellectual disability. Our findings expand the phenotypic spectrum and show that mtDNA mutations should be taken account also with milder, stable phenotypes.


Assuntos
Acidose Láctica/genética , DNA Mitocondrial/genética , Transtornos do Crescimento/genética , Deficiência Intelectual/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Acidose Láctica/complicações , Adolescente , Criança , Feminino , Transtornos do Crescimento/complicações , Humanos , Deficiência Intelectual/complicações , Masculino , Linhagem , Fenótipo , Mutação Puntual , Irmãos
18.
Ann Neurol ; 82(6): 1004-1015, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29205472

RESUMO

OBJECTIVE: 3-Methylglutaconic aciduria, dystonia-deafness, hepatopathy, encephalopathy, Leigh-like syndrome (MEGDHEL) syndrome is caused by biallelic variants in SERAC1. METHODS: This multicenter study addressed the course of disease for each organ system. Metabolic, neuroradiological, and genetic findings are reported. RESULTS: Sixty-seven individuals (39 previously unreported) from 59 families were included (age range = 5 days-33.4 years, median age = 9 years). A total of 41 different SERAC1 variants were identified, including 20 that have not been reported before. With the exception of 2 families with a milder phenotype, all affected individuals showed a strikingly homogeneous phenotype and time course. Severe, reversible neonatal liver dysfunction and hypoglycemia were seen in >40% of all cases. Starting at a median age of 6 months, muscular hypotonia (91%) was seen, followed by progressive spasticity (82%, median onset = 15 months) and dystonia (82%, 18 months). The majority of affected individuals never learned to walk (68%). Seventy-nine percent suffered hearing loss, 58% never learned to speak, and nearly all had significant intellectual disability (88%). Magnetic resonance imaging features were accordingly homogenous, with bilateral basal ganglia involvement (98%); the characteristic "putaminal eye" was seen in 53%. The urinary marker 3-methylglutaconic aciduria was present in virtually all patients (98%). Supportive treatment focused on spasticity and drooling, and was effective in the individuals treated; hearing aids or cochlear implants did not improve communication skills. INTERPRETATION: MEGDHEL syndrome is a progressive deafness-dystonia syndrome with frequent and reversible neonatal liver involvement and a strikingly homogenous course of disease. Ann Neurol 2017;82:1004-1015.


Assuntos
Hidrolases de Éster Carboxílico/genética , Surdocegueira/diagnóstico por imagem , Surdocegueira/genética , Progressão da Doença , Distonia/diagnóstico por imagem , Distonia/genética , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Mutação/genética , Atrofia Óptica/diagnóstico por imagem , Atrofia Óptica/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Estudos de Coortes , Surdocegueira/terapia , Distonia/terapia , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/terapia , Masculino , Atrofia Óptica/terapia , Adulto Jovem
19.
Epilepsia ; 59(8): 1595-1602, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29920680

RESUMO

OBJECTIVE: Epilepsy is common in individuals with mutations in POLG, the gene encoding the catalytic subunit of the mitochondrial DNA polymerase gamma. Early recognition and aggressive seizure management are crucial for patient survival. Disruption of the blood-brain barrier (BBB) is implicated in various neurological disorders including epilepsy. The aim of this study was to assess whether POLG-related disease is associated with BBB dysfunction and what clinical implications this has for patients. METHODS: Our retrospective study used data from 83 patients with pathogenic POLG mutations from 4 countries--Norway, Sweden, Finland, and the United Kingdom. Data were collected using a structured questionnaire. We used the presence of raised cerebrospinal fluid (CSF) protein and a raised CSF/serum ratio of albumin (Q-alb) to evaluate the integrity of the blood-CSF barrier. RESULTS: Raised CSF protein was found in 70% of patients (n = 58/83) and appeared to be associated with the most severe phenotypes. In those in whom it was measured, the Q-alb ratio was markedly elevated (n = 18). The majority of those with epilepsy (n = 50/66, 76%) had raised CSF protein, and this preceded seizure debut in 75% (n = 15/20). The median survival time from symptom onset for those with raised CSF protein was decreased (13 months) compared to those with normal CSF protein (32 months). SIGNIFICANCE: Our results indicate that there is disruption of the BBB in POLG-related disease, as evidenced by a raised CSF protein and Q-alb ratio. We also find that raised CSF protein is a common finding in patients with POLG disease. Our data suggest that the presence of BBB dysfunction predicts a poorer outcome, and elevated CSF protein may therefore be an additional biomarker both for early diagnosis and to identify those at high risk of developing epilepsy.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Proteínas do Líquido Cefalorraquidiano/metabolismo , DNA Polimerase gama/genética , Epilepsia , Mutação/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Epilepsia/líquido cefalorraquidiano , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Humanos , Lactente , Recém-Nascido , Cooperação Internacional , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
20.
Brain ; 140(8): 2093-2103, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633435

RESUMO

Defects in mRNA export from the nucleus have been linked to various neurodegenerative disorders. We report mutations in the gene MCM3AP, encoding the germinal center associated nuclear protein (GANP), in nine affected individuals from five unrelated families. The variants were associated with severe childhood onset primarily axonal (four families) or demyelinating (one family) Charcot-Marie-Tooth neuropathy. Mild to moderate intellectual disability was present in seven of nine affected individuals. The affected individuals were either compound heterozygous or homozygous for different MCM3AP variants, which were predicted to cause depletion of GANP or affect conserved amino acids with likely importance for its function. Accordingly, fibroblasts of affected individuals from one family demonstrated severe depletion of GANP. GANP has been described to function as an mRNA export factor, and to suppress TDP-43-mediated motor neuron degeneration in flies. Thus our results suggest defective mRNA export from nucleus as a potential pathogenic mechanism of axonal degeneration in these patients. The identification of MCM3AP variants in affected individuals from multiple centres establishes it as a disease gene for childhood-onset recessively inherited Charcot-Marie-Tooth neuropathy with intellectual disability.


Assuntos
Acetiltransferases/genética , Doença de Charcot-Marie-Tooth/genética , Predisposição Genética para Doença/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Acetiltransferases/metabolismo , Adolescente , Adulto , Células Cultivadas , Doença de Charcot-Marie-Tooth/complicações , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Humanos , Deficiência Intelectual/complicações , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Mutação , Linhagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA