Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Am J Respir Crit Care Med ; 209(10): 1196-1207, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113166

RESUMO

Rationale: Density thresholds in computed tomography (CT) lung scans quantify air trapping (AT) at the whole-lung level but are not informative for AT in specific bronchopulmonary segments. Objectives: To apply a segment-based measure of AT in asthma to investigate the clinical determinants of AT in asthma. Methods: In each of 19 bronchopulmonary segments in CT lung scans from 199 patients with asthma, AT was categorized as present if lung attenuation was less than -856 Hounsfield units at expiration in ⩾15% of the lung area. The resulting AT segment score (0-19) was related to patient outcomes. Measurements and Main Results: AT varied at the lung segment level and tended to persist at the patient and lung segment levels over 3 years. Patients with widespread AT (⩾10 segments) had more severe asthma (P < 0.05). The mean (±SD) AT segment score in patients with a body mass index ⩾30 kg/m2 was lower than in patients with a body mass index <30 kg/m2 (3.5 ± 4.6 vs. 5.5 ± 6.3; P = 0.008), and the frequency of AT in lower lobe segments in obese patients was less than in upper and middle lobe segments (35% vs. 46%; P = 0.001). The AT segment score in patients with sputum eosinophils ⩾2% was higher than in patients without sputum eosinophilia (7.0 ± 6.1 vs. 3.3 ± 4.9; P < 0.0001). Lung segments with AT more frequently had airway mucus plugging than lung segments without AT (48% vs. 18%; P ⩽ 0.0001). Conclusions: In patients with asthma, air trapping is more severe in those with airway eosinophilia and mucus plugging, whereas those who are obese have less severe trapping because their lower lobe segments are spared.


Assuntos
Asma , Eosinofilia , Obesidade , Tomografia Computadorizada por Raios X , Humanos , Asma/diagnóstico por imagem , Asma/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/fisiopatologia , Adulto , Eosinofilia/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Idoso , Índice de Massa Corporal
2.
Artigo em Inglês | MEDLINE | ID: mdl-38663815

RESUMO

BACKGROUND: The relative utility of eosinophil peroxidase (EPX) and blood and sputum eosinophil counts as disease biomarkers in asthma is uncertain. OBJECTIVE: We sought to determine the utility of EPX as a biomarker of systemic and airway eosinophilic inflammation in asthma. METHODS: EPX protein was measured by immunoassay in serum and sputum in 110 healthy controls to establish a normal reference range and in repeated samples of serum and sputum collected during 3 years of observation in 480 participants in the Severe Asthma Research Program 3. RESULTS: Over 3 years, EPX levels in patients with asthma were higher than normal in 27% to 31% of serum samples and 36% to 53% of sputum samples. Eosinophils and EPX correlated better in blood than in sputum (rs values of 0.74 and 0.43, respectively), and high sputum EPX levels occurred in 27% of participants with blood eosinophil counts less than 150 cells/µL and 42% of participants with blood eosinophil counts between 150 and 299 cells/µL. Patients with persistently high sputum EPX values for 3 years were characterized by severe airflow obstruction, frequent exacerbations, and high mucus plug scores. In 59 patients with asthma who started mepolizumab during observation, serum EPX levels normalized in 96% but sputum EPX normalized in only 49%. Lung function remained abnormal even when sputum EPX normalized. CONCLUSIONS: Serum EPX is a valid protein biomarker of systemic eosinophilic inflammation in asthma, and sputum EPX levels are a more sensitive biomarker of airway eosinophilic inflammation than sputum eosinophil counts. Eosinophil measures in blood frequently miss airway eosinophilic inflammation, and mepolizumab frequently fails to normalize airway eosinophilic inflammation even though it invariably normalizes systemic eosinophilic inflammation.

3.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L796-L804, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651338

RESUMO

Secreted deoxyribonucleases (DNases), such as DNase-I and DNase-IL3, degrade extracellular DNA, and endogenous DNases have roles in resolving airway inflammation and guarding against autoimmune responses to nucleotides. Subsets of patients with asthma have high airway DNA levels, but information about DNase activity in health and in asthma is lacking. To characterize DNase activity in health and in asthma, we developed a novel kinetic assay using a Taqman probe sequence that is quickly cleaved by DNase-I to produce a large product signal. We used this kinetic assay to measure DNase activity in sputum from participants in the Severe Asthma Research Program (SARP)-3 (n = 439) and from healthy controls (n = 89). We found that DNase activity was lower than normal in asthma [78.7 relative fluorescence units (RFU)/min vs. 120.4 RFU/min, P < 0.0001]. Compared to patients with asthma with sputum DNase activity in the upper tertile activity levels, those in the lower tertile of sputum DNase activity were characterized clinically by more severe disease and pathologically by airway eosinophilia and airway mucus plugging. Carbamylation of DNase-I, a post-translational modification that can be mediated by eosinophil peroxidase, inactivated DNase-I. In summary, a Taqman probe-based DNase activity assay uncovers low DNase activity in the asthma airway that is associated with more severe disease and airway mucus plugging and may be caused, at least in part, by eosinophil-mediated carbamylation.NEW & NOTEWORTHY We developed a new DNase assay and used it to show that DNase activity is impaired in asthma airways.


Assuntos
Asma , Desoxirribonuclease I , Escarro , Humanos , Asma/metabolismo , Asma/enzimologia , Feminino , Masculino , Escarro/metabolismo , Escarro/enzimologia , Adulto , Pessoa de Meia-Idade , Desoxirribonuclease I/metabolismo , Desoxirribonucleases/metabolismo
4.
Clin Exp Allergy ; 54(4): 265-277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253462

RESUMO

INTRODUCTION: Previous bronchoalveolar lavage fluid (BALF) proteomic analysis has evaluated limited numbers of subjects for only a few proteins of interest, which may differ between asthma and normal controls. Our objective was to examine a more comprehensive inflammatory biomarker panel in quantitative proteomic analysis for a large asthma cohort to identify molecular phenotypes distinguishing severe from nonsevere asthma. METHODS: Bronchoalveolar lavage fluid from 48 severe and 77 nonsevere adult asthma subjects were assessed for 75 inflammatory proteins, normalized to BALF total protein concentration. Validation of BALF differences was sought through equivalent protein analysis of autologous sputum. Subjects' data, stratified by asthma severity, were analysed by standard statistical tests, principal component analysis and 5 machine learning algorithms. RESULTS: The severe group had lower lung function and greater health care utilization. Significantly increased BALF proteins for severe asthma compared to nonsevere asthma were fibroblast growth factor 2 (FGF2), TGFα, IL1Ra, IL2, IL4, CCL8, CCL13 and CXCL7 and significantly decreased were platelet-derived growth factor a-a dimer (PDGFaa), vascular endothelial growth factor (VEGF), interleukin 5 (IL5), CCL17, CCL22, CXCL9 and CXCL10. Four protein differences were replicated in sputum. FGF2, PDGFaa and CXCL7 were independently identified by 5 machine learning algorithms as the most important variables for discriminating severe and nonsevere asthma. Increased and decreased proteins identified for the severe cluster showed significant protein-protein interactions for chemokine and cytokine signalling, growth factor activity, and eosinophil and neutrophil chemotaxis differing between subjects with severe and nonsevere asthma. CONCLUSION: These inflammatory protein results confirm altered airway remodelling and cytokine/chemokine activity recruiting leukocytes into the airways of severe compared to nonsevere asthma as important processes even in stable status.


Assuntos
Asma , Fator A de Crescimento do Endotélio Vascular , Adulto , Humanos , Proteômica , Fator 2 de Crescimento de Fibroblastos , Citocinas/metabolismo , Lavagem Broncoalveolar , Quimiocinas , Líquido da Lavagem Broncoalveolar
5.
Artigo em Inglês | MEDLINE | ID: mdl-38697286

RESUMO

BACKGROUND: Long-term tezepelumab treatment in the DESTINATION study (NCT03706079) resulted in reduced asthma exacerbations, reduced biomarker levels, and improved lung function and symptom control in patients with severe, uncontrolled asthma. OBJECTIVE: To explore the time course of changes in biomarkers and clinical manifestations after treatment cessation after 2 years of tezepelumab treatment. METHODS: DESTINATION was a 2-year, phase 3, multicenter, randomized, placebo-controlled, double-blind study of tezepelumab treatment in patients (12-80 years old) with severe asthma. Patients received their last treatment doses at week 100 and could enroll in an extended follow-up period from weeks 104 to 140. Change over time in key biomarkers and clinical outcomes were assessed in tezepelumab vs placebo recipients for 40 weeks after stopping treatment. RESULTS: Of 569 patients enrolled in the extended follow-up period, 426 were included in the analysis (289 received tezepelumab and 137 placebo). In the 40-week period after the last tezepelumab dose, blood eosinophil counts, fractional exhaled nitric oxide levels, and Asthma Control Questionnaire-6 scores gradually increased from weeks 4 to 10, with a gradual reduction in pre-bronchodilator forced expiratory volume in 1 second such that blood eosinophil counts, fractional exhaled nitric oxide levels, and clinical outcomes returned to placebo levels; however, none of these outcomes returned to baseline levels. Total IgE levels increased later from week 28 and remained well below placebo and baseline levels during the 40-week period after the last tezepelumab dose. CONCLUSION: This analysis reveals the benefits of continued tezepelumab treatment in the management of patients with severe, uncontrolled asthma, compared with stopping treatment after 2 years. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03706079.

7.
J Allergy Clin Immunol Pract ; 12(4): 809-823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280454

RESUMO

Severe asthma is associated with significant morbidity and mortality despite the maximal use of inhaled corticosteroids and additional controller medications, and has a high economic burden. Biologic therapies are recommended for the management of severe, uncontrolled asthma to help to prevent exacerbations and to improve symptoms and health-related quality of life. The effective management of severe asthma requires consideration of clinical heterogeneity that is driven by varying clinical and inflammatory phenotypes, which are reflective of distinct underlying disease mechanisms. Phenotyping patients using a combination of clinical characteristics such as the age of onset or comorbidities and biomarker profiles, including blood eosinophil counts and levels of fractional exhaled nitric oxide and serum total immunoglobulin E, is important for the differential diagnosis of asthma. In addition, phenotyping is beneficial for risk assessment, selection of treatment, and monitoring of the treatment response in patients with asthma. This review describes the clinical and inflammatory phenotypes of asthma, provides an overview of biomarkers routinely used in clinical practice and those that have recently been explored for phenotyping, and aims to assess the value of phenotyping in severe asthma management in the current era of biologics.


Assuntos
Antiasmáticos , Asma , Produtos Biológicos , Humanos , Antiasmáticos/uso terapêutico , Produtos Biológicos/uso terapêutico , Qualidade de Vida , Asma/diagnóstico , Asma/tratamento farmacológico , Eosinófilos , Biomarcadores
8.
Ther Adv Respir Dis ; 18: 17534666241232264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698565

RESUMO

What is this summary about?This summary describes the results of a clinical study called MANDALA that was published in the New England Journal of Medicine in 2022. In the MANDALA study, researchers looked at a new asthma rescue inhaler that contains both albuterol and budesonide in a single inhaler (known as albuterol-budesonide, AIRSUPRA™). This summary describes the results for people aged 18 yearsand older who took part in the study.


Assuntos
Albuterol , Asma , Broncodilatadores , Budesonida , Combinação de Medicamentos , Nebulizadores e Vaporizadores , Humanos , Asma/tratamento farmacológico , Albuterol/administração & dosagem , Administração por Inalação , Broncodilatadores/administração & dosagem , Budesonida/administração & dosagem , Adulto , Pessoa de Meia-Idade , Masculino , Feminino , Resultado do Tratamento , Adolescente , Adulto Jovem , Idoso , Antiasmáticos/administração & dosagem
9.
bioRxiv ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39071372

RESUMO

Obesity-related airway disease is a clinical condition without a clear description and effective treatment. Here, we define this pathology and its unique properties, which differ from classic asthma phenotypes, and identify a novel adipo-pulmonary axis mediated by FABP4 hormone as a critical mediator of obesity-induced airway disease. Through detailed analysis of murine models and human samples, we elucidate the dysregulated lipid metabolism and immunometabolic responses within obese lungs, particularly highlighting the stress response activation and downregulation of surfactant-related genes, notably SftpC. We demonstrate that FABP4 deficiency mitigates these alterations, demonstrating a key role in obesity-induced airway disease pathogenesis. Importantly, we identify adipose tissue as the source of FABP4 hormone in the bronchoalveolar space and describe strong regulation in the context of human obesity, particularly among women. Finally, our exploration of antibody-mediated targeting of circulating FABP4 unveils a novel therapeutic avenue, addressing a pressing unmet need in managing obesity-related airway disease. These findings not only define the presence of a critical adipo-pulmonary endocrine link but also present FABP4 as a therapeutic target for managing this unique airway disease that we refer to as fatty lung disease associated with obesity. One Sentence Summary: Investigating FABP4's pivotal role in obesity-driven airway disease, this study unveils an adipo-pulmonary axis with potential therapeutic implications.

10.
J Allergy Clin Immunol Pract ; 12(4): 960-969.e6, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38097180

RESUMO

BACKGROUND: A multicenter clinical trial in patients with mild persistent asthma indicated that response to inhaled corticosteroids (ICS) is limited to those with sputum eosinophilia. However, testing for sputum eosinophilia is impractical in most clinical settings. OBJECTIVE: We examined associations between sputum eosinophilia and type 2 inflammatory biomarkers in untreated mild persistent asthma. METHODS: Induced sputum, blood eosinophil count (BEC), fractional exhaled nitric oxide (FeNO), and serum periostin were obtained twice during the 6-week run-in period in a clinical trial that enrolled patients 12 years and older with symptomatic, mild persistent asthma without controller therapy. The optimal threshold for each biomarker was based on achieving 80% or greater sensitivity. Performance of biomarkers (area under the receiver operating characteristics curve [AUC], range 0.0-1.0) in predicting sputum eosinophilia 2% or greater was determined; AUCs of 0.8 to 0.9 and more than 0.9 define excellent and outstanding discrimination, respectively. RESULTS: Of 564 participants, 27% were sputum eosinophilic, 83% were atopic, 70% had BEC of 200/uL or higher or FeNO of 25 ppb or greater; 64% of participants without sputum eosinophilia had elevated BEC or FeNO. The AUCs for BEC, FeNO, and both together in predicting sputum eosinophilia were all below the threshold for excellent discrimination (AUC 0.75, 0.78, and 0.79, respectively). Periostin (in adults) had poor discrimination (AUC 0.59; P = .02). CONCLUSIONS: In untreated mild persistent asthma, there is substantial discordance between sputum eosinophilia, BEC, and FeNO. Until prospective trials test the ability of alternative biomarkers to predict ICS response, BEC or FeNO phenotyping may be an option to consider ICS through a shared decision-making process with consideration of other clinical features.


Assuntos
Asma , Eosinofilia , Adulto , Humanos , Estudos Prospectivos , Escarro , Óxido Nítrico , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/complicações , Eosinófilos , Biomarcadores , Eosinofilia/complicações , Testes Respiratórios
11.
JCI Insight ; 9(15)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889046

RESUMO

Mucus plugs occlude airways to obstruct airflow in asthma. Studies in patients and in mouse models show that mucus plugs occur in the context of type 2 inflammation, and studies in human airway epithelial cells (HAECs) show that IL-13-activated cells generate pathologic mucus independently of immune cells. To determine how HAECs autonomously generate pathologic mucus, we used a magnetic microwire rheometer to characterize the viscoelastic properties of mucus secreted under varying conditions. We found that normal HAEC mucus exhibited viscoelastic liquid behavior and that mucus secreted by IL-13-activated HAECs exhibited solid-like behavior caused by mucin cross-linking. In addition, IL-13-activated HAECs shows increased peroxidase activity in apical secretions, and an overlaid thiolated polymer (thiomer) solution shows an increase in solid behavior that was prevented by peroxidase inhibition. Furthermore, gene expression for thyroid peroxidase (TPO), but not lactoperoxidase (LPO), was increased in IL-13-activated HAECs and both TPO and LPO catalyze the formation of oxidant acids that cross-link thiomer solutions. Finally, gene expression for TPO in airway epithelial brushings was increased in patients with asthma with high airway mucus plug scores. Together, our results show that IL-13-activated HAECs autonomously generated pathologic mucus via peroxidase-mediated cross-linking of mucin polymers.


Assuntos
Células Epiteliais , Interleucina-13 , Muco , Humanos , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Células Epiteliais/metabolismo , Muco/metabolismo , Mucinas/metabolismo , Asma/metabolismo , Asma/patologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Lactoperoxidase/metabolismo , Géis
12.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38127464

RESUMO

BACKGROUNDInformation about the size, airway location, and longitudinal behavior of mucus plugs in asthma is needed to understand their role in mechanisms of airflow obstruction and to rationally design muco-active treatments.METHODSCT lung scans from 57 patients with asthma were analyzed to quantify mucus plug size and airway location, and paired CT scans obtained 3 years apart were analyzed to determine plug behavior over time. Radiologist annotations of mucus plugs were incorporated in an image-processing pipeline to generate size and location information that was related to measures of airflow.RESULTSThe length distribution of 778 annotated mucus plugs was multimodal, and a 12 mm length defined short ("stubby", ≤12 mm) and long ("stringy", >12 mm) plug phenotypes. High mucus plug burden was disproportionately attributable to stringy mucus plugs. Mucus plugs localized predominantly to airway generations 6-9, and 47% of plugs in baseline scans persisted in the same airway for 3 years and fluctuated in length and volume. Mucus plugs in larger proximal generations had greater effects on spirometry measures than plugs in smaller distal generations, and a model of airflow that estimates the increased airway resistance attributable to plugs predicted a greater effect for proximal generations and more numerous mucus plugs.CONCLUSIONPersistent mucus plugs in proximal airway generations occur in asthma and demonstrate a stochastic process of formation and resolution over time. Proximal airway mucus plugs are consequential for airflow and are in locations amenable to treatment by inhaled muco-active drugs or bronchoscopy.TRIAL REGISTRATIONClinicaltrials.gov; NCT01718197, NCT01606826, NCT01750411, NCT01761058, NCT01761630, NCT01716494, and NCT01760915.FUNDINGAstraZeneca, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Sanofi-Genzyme-Regeneron, and TEVA provided financial support for study activities at the Coordinating and Clinical Centers beyond the third year of patient follow-up. These companies had no role in study design or data analysis, and the only restriction on the funds was that they be used to support the SARP initiative.


Assuntos
Asma , Humanos , Broncoscopia , Pulmão/diagnóstico por imagem , Muco , Tomografia Computadorizada por Raios X
13.
Allergy Asthma Immunol Res ; 16(4): 338-352, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39155735

RESUMO

PURPOSE: Asthma is a clinical syndrome with various underlying pathomechanisms and clinical phenotypes. Genetic, ethnic, and geographic factors may influence the differences in clinical presentation, severity, and prognosis. We compared the characteristics of asthma based on the geographical background by analyzing representative cohorts from the United States, Europe, South America, and Asia using the Severe Asthma Research Program (SARP), Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED), Program for Control of Asthma in Bahia (ProAR), and Cohort for Reality and Evolution of Adult Asthma in Korea (COREA), respectively. METHODS: The clinical characteristics and medications for the SARP (n = 669), U-BIOPRED (n = 509), ProAR (n = 996), and COREA (n = 3,748) were analyzed. Subgroup analysis was performed for severe asthma. RESULTS: The mean age was highest and lowest in the COREA and SARP, respectively. The asthma onset age was lowest in the ProAR. The mean body mass index was highest and lowest in the SARP and COREA, respectively. Baseline pulmonary function was lowest and highest in the U-BIOPRED and COREA, respectively. The number of patients with acute exacerbation in the previous year was highest in U-BIOPRED. The mean blood eosinophil count was highest in COREA. The total immunoglobulin E was highest in the ProAR. The frequency of atopy was highest in the SARP. The principal component analysis plot revealed differences among all cohorts. CONCLUSIONS: The cohorts from 4 different continents exhibited different clinical and physiological characteristics, probably resulting from the interplay between genetic susceptibility and geographical factors.

14.
Nat Commun ; 15(1): 3900, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724552

RESUMO

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Assuntos
Asma , Proteínas Ligadas por GPI , Interleucina-13 , Lectinas , Mucina-5AC , Muco , Criança , Humanos , Asma/genética , Asma/metabolismo , Citocinas , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Muco/metabolismo , Mucosa Nasal/metabolismo , Polimorfismo Genético , Mucosa Respiratória/metabolismo
15.
medRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106101

RESUMO

Rationale: Although airway oxidative stress and inflammation are central to asthma pathogenesis, there is limited knowledge of the relationship of asthma risk, severity, or exacerbations to mitochondrial dysfunction, which is pivotal to oxidant generation and inflammation. Objectives: We investigated whether mitochondrial DNA copy number (mtDNA-CN) as a measure of mitochondrial function is associated with asthma diagnosis, severity, oxidative stress, and exacerbations. Methods: We measured mtDNA-CN in blood in two cohorts. In the UK Biobank (UKB), we compared mtDNA-CN in mild and moderate-severe asthmatics to non-asthmatics. In the Severe Asthma Research Program (SARP), we evaluated mtDNA-CN in relation to asthma severity, biomarkers of oxidative stress and inflammation, and exacerbations. Measures and Main Results: In UK Biobank, asthmatics (n = 29,768) have lower mtDNA-CN compared to non-asthmatics (n = 239,158) (beta, -0.026 [95% CI, -0.038 to -0.014], P = 2.46×10-5). While lower mtDNA-CN is associated with asthma, mtDNA-CN did not differ by asthma severity in either UKB or SARP. Biomarkers of inflammation show that asthmatics have higher white blood cells (WBC), neutrophils, eosinophils, fraction exhaled nitric oxide (FENO), and lower superoxide dismutase (SOD) than non-asthmatics, confirming greater oxidative stress in asthma. In one year follow-up in SARP, higher mtDNA-CN is associated with reduced risk of three or more exacerbations in the subsequent year (OR 0.352 [95% CI, 0.164 to 0.753], P = 0.007). Conclusions: Asthma is characterized by mitochondrial dysfunction. Higher mtDNA-CN identifies an exacerbation-resistant asthma phenotype, suggesting mitochondrial function is important in exacerbation risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA