Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(14): 2478-2494.e28, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35662413

RESUMO

Glucagon-like peptide-1 (GLP-1) is a signal peptide released from enteroendocrine cells of the lower intestine. GLP-1 exerts anorectic and antimotility actions that protect the body against nutrient malabsorption. However, little is known about how intestinal GLP-1 affects distant organs despite rapid enzymatic inactivation. We show that intestinal GLP-1 inhibits gastric emptying and eating via intestinofugal neurons, a subclass of myenteric neurons that project to abdominal sympathetic ganglia. Remarkably, cell-specific ablation of intestinofugal neurons eliminated intestinal GLP-1 effects, and their chemical activation functioned as a GLP-1 mimetic. GLP-1 sensing by intestinofugal neurons then engaged a sympatho-gastro-spinal-reticular-hypothalamic pathway that links abnormal stomach distension to craniofacial programs for food rejection. Within this pathway, cell-specific activation of discrete neuronal populations caused systemic GLP-1-like effects. These molecularly identified, delimited enteric circuits may be targeted to ameliorate the abdominal bloating and loss of appetite typical of gastric motility disorders.


Assuntos
Apetite , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Íleo , Neurônios , Estômago , Abdome , Animais , Comunicação Celular , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Íleo/inervação , Íleo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Estômago/inervação , Estômago/metabolismo
2.
Cell ; 175(3): 665-678.e23, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30245012

RESUMO

The gut is now recognized as a major regulator of motivational and emotional states. However, the relevant gut-brain neuronal circuitry remains unknown. We show that optical activation of gut-innervating vagal sensory neurons recapitulates the hallmark effects of stimulating brain reward neurons. Specifically, right, but not left, vagal sensory ganglion activation sustained self-stimulation behavior, conditioned both flavor and place preferences, and induced dopamine release from Substantia nigra. Cell-specific transneuronal tracing revealed asymmetric ascending pathways of vagal origin throughout the CNS. In particular, transneuronal labeling identified the glutamatergic neurons of the dorsolateral parabrachial region as the obligatory relay linking the right vagal sensory ganglion to dopamine cells in Substantia nigra. Consistently, optical activation of parabrachio-nigral projections replicated the rewarding effects of right vagus excitation. Our findings establish the vagal gut-to-brain axis as an integral component of the neuronal reward pathway. They also suggest novel vagal stimulation approaches to affective disorders.


Assuntos
Intestinos/fisiologia , Recompensa , Substância Negra/fisiologia , Nervo Vago/fisiologia , Vias Aferentes/metabolismo , Vias Aferentes/fisiologia , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Ácido Glutâmico/metabolismo , Intestinos/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética
3.
Cell ; 168(1-2): 311-324.e18, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086095

RESUMO

Superior predatory skills led to the evolutionary triumph of jawed vertebrates. However, the mechanisms by which the vertebrate brain controls predation remain largely unknown. Here, we reveal a critical role for the central nucleus of the amygdala in predatory hunting. Both optogenetic and chemogenetic stimulation of central amygdala of mice elicited predatory-like attacks upon both insect and artificial prey. Coordinated control of cervical and mandibular musculatures, which is necessary for accurately positioning lethal bites on prey, was mediated by a central amygdala projection to the reticular formation in the brainstem. In contrast, prey pursuit was mediated by projections to the midbrain periaqueductal gray matter. Targeted lesions to these two pathways separately disrupted biting attacks upon prey versus the initiation of prey pursuit. Our findings delineate a neural network that integrates distinct behavioral modules and suggest that central amygdala neurons instruct predatory hunting across jawed vertebrates.


Assuntos
Núcleo Central da Amígdala/fisiologia , Comportamento Predatório , Animais , Ansiedade/metabolismo , Núcleo Central da Amígdala/anatomia & histologia , Eletromiografia , Interneurônios/metabolismo , Mandíbula/anatomia & histologia , Mandíbula/inervação , Mandíbula/fisiologia , Camundongos , Pescoço/anatomia & histologia , Pescoço/inervação , Pescoço/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia
5.
Nat Methods ; 21(7): 1257-1274, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38890427

RESUMO

The dry mass and the orientation of biomolecules can be imaged without a label by measuring their permittivity tensor (PT), which describes how biomolecules affect the phase and polarization of light. Three-dimensional (3D) imaging of PT has been challenging. We present a label-free computational microscopy technique, PT imaging (PTI), for the 3D measurement of PT. PTI encodes the invisible PT into images using oblique illumination, polarization-sensitive detection and volumetric sampling. PT is decoded from the data with a vectorial imaging model and a multi-channel inverse algorithm, assuming uniaxial symmetry in each voxel. We demonstrate high-resolution imaging of PT of isotropic beads, anisotropic glass targets, mouse brain tissue, infected cells and histology slides. PTI outperforms previous label-free imaging techniques such as vector tomography, ptychography and light-field imaging in resolving the 3D orientation and symmetry of organelles, cells and tissue. We provide open-source software and modular hardware to enable the adoption of the method.


Assuntos
Algoritmos , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Microscopia/métodos , Software , Humanos , Processamento de Imagem Assistida por Computador/métodos
6.
Plant Physiol ; 195(1): 799-811, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330218

RESUMO

The transcription factor WUSCHEL-RELATED HOMEOBOX 11 (WOX11) in Arabidopsis (Arabidopsis thaliana) initiates the formation of adventitious lateral roots upon mechanical injury in primary roots. Root-invading nematodes also induce de novo root organogenesis leading to excessive root branching, but it is not known if this symptom of disease involves mediation by WOX11 and if it benefits the plant. Here, we show with targeted transcriptional repression and reporter gene analyses in Arabidopsis that the beet cyst nematode Heterodera schachtii activates WOX11-mediated adventitious lateral rooting from primary roots close to infection sites. The activation of WOX11 in nematode-infected roots occurs downstream of jasmonic acid-dependent damage signaling via ETHYLENE RESPONSE FACTOR109, linking adventitious lateral root formation to nematode damage to host tissues. By measuring different root system components, we found that WOX11-mediated formation of adventitious lateral roots compensates for nematode-induced inhibition of primary root growth. Our observations further demonstrate that WOX11-mediated rooting reduces the impact of nematode infections on aboveground plant development and growth. Altogether, we conclude that the transcriptional regulation by WOX11 modulates root system plasticity under biotic stress, which is one of the key mechanisms underlying the tolerance of Arabidopsis to cyst nematode infections.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Fatores de Transcrição , Tylenchoidea , Animais , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/parasitologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tylenchoidea/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Plantas Geneticamente Modificadas
7.
J Biol Chem ; 299(5): 103003, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775125

RESUMO

DNA gyrase is an essential nucleoprotein motor present in all bacteria and is a major target for antibiotic treatment of Mycobacterium tuberculosis (MTB) infection. Gyrase hydrolyzes ATP to add negative supercoils to DNA using a strand passage mechanism that has been investigated using biophysical and biochemical approaches. To analyze the dynamics of substeps leading to strand passage, single-molecule rotor bead tracking (RBT) has been used previously to follow real-time supercoiling and conformational transitions in Escherichia coli (EC) gyrase. However, RBT has not yet been applied to gyrase from other pathogenically relevant bacteria, and it is not known whether substeps are conserved across evolutionarily distant species. Here, we compare gyrase supercoiling dynamics between two evolutionarily distant bacterial species, MTB and EC. We used RBT to measure supercoiling rates, processivities, and the geometries and transition kinetics of conformational states of purified gyrase proteins in complex with DNA. Our results show that E. coli and MTB gyrases are both processive, with the MTB enzyme displaying velocities ∼5.5× slower than the EC enzyme. Compared with EC gyrase, MTB gyrase also more readily populates an intermediate state with DNA chirally wrapped around the enzyme, in both the presence and absence of ATP. Our substep measurements reveal common features in conformational states of EC and MTB gyrases interacting with DNA but also suggest differences in populations and transition rates that may reflect distinct cellular needs between these two species.


Assuntos
DNA Girase , Escherichia coli , Mycobacterium tuberculosis , Trifosfato de Adenosina/metabolismo , DNA , DNA Girase/química , DNA Girase/metabolismo , DNA Super-Helicoidal , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Simulação de Dinâmica Molecular
8.
Chemistry ; 30(8): e202303229, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38032158

RESUMO

Carbazole is a heterocyclic motif that can be found in a diverse array of natural and unnatural products displaying a wide range of biological and physiological properties. Furthermore, this heterocycle is part of electronic materials like photoconducting polymers and organic optoelectronic materials owing to its excellent photophysical characteristics. Consequently, the development of synthetic strategies for carbazole scaffolds holds potential significance in biological and material fields. In this regard, a variety of preparation methods has been developed to exploit their efficient and distinct formation of new C-C and C-heteroatom bonds under mild conditions and enabling broad substrate diversity and functional group tolerance. Therefore, this review focuses on the synthesis of a set of carbazole derivatives describing a variety of methodologies that involve direct irradiation, photosensitization, photoredox, electrochemical and thermal cyclization reactions.

9.
Chemistry ; 30(30): e202400905, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38536766

RESUMO

Blue LEDs-irradiation of a mixture of N,N,N',N'-tetramethylethylenediamine (TMEDA) and perfluoroalkyl iodides (RF-I) - Electron Donor Acceptor (EDA)-complex - in the presence of triphenylamines (TPAs) in an aqueous solvent mixture afforded mono-perfluoroalkylated triphenylamines (RF-TPA) in good yields. These RF-TPA were further subjected to acetone-sensitized [6π]-electrocyclization at 315 nm-irradiation affording exclusively perfluoroalkylated endo-carbazole derivatives (RF-CBz) in quantitative yields. Mechanistic studies and photophysical properties of products are studied.

10.
Org Biomol Chem ; 22(19): 3910-3925, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38656328

RESUMO

Herein, we have showed the photophysical properties of favipiravir and its 6-substituted analogues. Also, we interpreted the origin of fluorescence of favipiravir and its 6-substituted analogues as a function of tautomerism modulation in ground and excited states. Favipiravir, the 6-fluorine derivative, showed the best photophysical profile, exhibiting a dominant emission wavelength of 430 nm, a high quantum yield (Q.Y.) of 1.0 and a long-lived state (10 ns). Its analogues also showed a maximum emission at 430 nm, but their Q.Y. values were 5-fold lower than that found for favipiravir, decreasing as a function of 6-substitution as follows: F > Cl > Br > I > H. Pyrazines bearing the least electronegative 6-substituent (X = Br, I, H) showed an extra lifetime, which was shorter (0.2-0.3 ns) and less abundant (>15%) than the main lifetime (10 ns, 85%). Further 2D excitation-emission matrix and solvent studies supported that these 3-hydroxy-2-pyrazinecarboxamides present two emissive states. The first of them (λem = 430 nm), which was the most abundant, most fluorescent and long-lived state, was characterized as "locally excited" (LE). Its fluorescence was favored with an increase of the hydrogen-donor nature of the solvent and for pyrazines having a high enolic characteristic. Thus, the high LE-fluorescence of these types of pyrazines depends on the keto-tautomerization of the ground state using a protic solvent and its feasible enol-tautomerization upon excitation. Finally, the second excited state (λem = 536 nm) was suggested as an excited-state intramolecular proton-transfer (ESIPT), and it was observed only, although discretely, for pyrazines bearing the least electronegative 6-substituent.

11.
Nucleic Acids Res ; 50(4): 1875-1887, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35037039

RESUMO

Although there are several pathways to ensure that proteins are folded properly in the cell, little is known about the molecular mechanisms regulating histone folding and proteostasis. In this work, we identified that chaperone-mediated autophagy (CMA) is the main pathway involved in the degradation of newly synthesized histones H3 and H4. This degradation is finely regulated by the interplay between HSC70 and tNASP, two histone interacting proteins. tNASP stabilizes histone H3 levels by blocking the direct transport of histone H3 into lysosomes. We further demonstrate that CMA degrades unfolded histone H3. Thus, we reveal that CMA is the main degradation pathway involved in the quality control of histone biogenesis, evidencing an additional mechanism in the intricate network of histone cellular proteostasis.


Assuntos
Autofagia Mediada por Chaperonas , Histonas , Autofagia , Histonas/metabolismo , Lisossomos/metabolismo , Biossíntese de Proteínas
12.
PLoS Pathog ; 17(11): e1010017, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34724007

RESUMO

The plant pathogen Pseudomonas syringae secretes multiple effectors that modulate plant defenses. Some effectors trigger defenses due to specific recognition by plant immune complexes, whereas others can suppress the resulting immune responses. The HopZ3 effector of P. syringae pv. syringae B728a (PsyB728a) is an acetyltransferase that modifies not only components of plant immune complexes, but also the Psy effectors that activate these complexes. In Arabidopsis, HopZ3 acetylates the host RPM1 complex and the Psy effectors AvrRpm1 and AvrB3. This study focuses on the role of HopZ3 during tomato infection. In Psy-resistant tomato, the main immune complex includes PRF and PTO, a RIPK-family kinase that recognizes the AvrPto effector. HopZ3 acts as a virulence factor on tomato by suppressing AvrPto1Psy-triggered immunity. HopZ3 acetylates AvrPto1Psy and the host proteins PTO, SlRIPK and SlRIN4s. Biochemical reconstruction and site-directed mutagenesis experiments suggest that acetylation acts in multiple ways to suppress immune signaling in tomato. First, acetylation disrupts the critical AvrPto1Psy-PTO interaction needed to initiate the immune response. Unmodified residues at the binding interface of both proteins and at other residues needed for binding are acetylated. Second, acetylation occurs at residues important for AvrPto1Psy function but not for binding to PTO. Finally, acetylation reduces specific phosphorylations needed for promoting the immune-inducing activity of HopZ3's targets such as AvrPto1Psy and PTO. In some cases, acetylation competes with phosphorylation. HopZ3-mediated acetylation suppresses the kinase activity of SlRIPK and the phosphorylation of its SlRIN4 substrate previously implicated in PTO-signaling. Thus, HopZ3 disrupts the functions of multiple immune components and the effectors that trigger them, leading to increased susceptibility to infection. Finally, mass spectrometry used to map specific acetylated residues confirmed HopZ3's unusual capacity to modify histidine in addition to serine, threonine and lysine residues.


Assuntos
Acetiltransferases/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Proteínas de Bactérias/antagonistas & inibidores , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/imunologia , Acetilação , Acetiltransferases/genética , Acetiltransferases/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
13.
NMR Biomed ; 36(6): e4906, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36640112

RESUMO

Chemical exchange saturation transfer (CEST) MRI has gained recognition as a valuable addition to the molecular imaging and quantitative biomarker arsenal, especially for characterization of brain tumors. There is also increasing interest in the use of CEST-MRI for applications beyond the brain. However, its translation to body oncology applications lags behind those in neuro-oncology. The slower migration of CEST-MRI to non-neurologic applications reflects the technical challenges inherent to imaging of the torso. In this review, we discuss the application of CEST-MRI to oncologic conditions of the breast and torso (i.e., body imaging), emphasizing the challenges and potential solutions to address them. While data are still limited, reported studies suggest that CEST signal is associated with important histology markers such as tumor grade, receptor status, and proliferation index, some of which are often associated with prognosis and response to therapy. However, further technical development is still needed to make CEST a reliable clinical application for body imaging and establish its role as a predictive and prognostic biomarker.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Prognóstico , Imagem Molecular
14.
J Org Chem ; 88(7): 4405-4421, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36976299

RESUMO

The substituent and solvent effects on the spectroscopic behavior and on the photoinduced [6π]-electrocyclization reaction of substituted triphenylamine derivatives have been investigated. Direct irradiation of triphenylamines bearing electron-donor substituents in different solvents has provided for the first time the substituted exo/endo carbazole derivatives from modest to good yields, whereas triphenylamines bearing electron-withdrawing substituents did not provide the carbazoles due to the formation of charge transfer complexes (CTCs). A corollary of the experiments purports that the photoreaction is favored with weak electron-acceptor groups in polar solvents. The lowest-frequency absorption bands of the triarylamines (π,π* electronic transitions) displayed bathochromic shifts as the solvent polarity is increased. The fluorescence emission spectra of triarylamines bearing electron-donor substituents behave as mirror images of the lowest absorption bands, showing dependence on the solvent polarity. Conversely, triarylamines bearing formyl, acetyl, and nitro groups formed CTCs behaving as good fluorescence chromophores in polar solvents. Hammett correlations on the ΔE(0,0) energies of monosubstituted amines showed a bell-shape behavior where the ρ values depended on the solvent polarity. The physical quenching of the photoreaction of triarylamines has demonstrated for the first time that the triplet excited state is univocally the photoreactive state leading to exo/endo carbazole derivatives.

15.
Inorg Chem ; 62(28): 10965-10972, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37399244

RESUMO

In the present work, the study of the unusual interaction between copper hexafluoroacetylacetonate and the diacetyliminoxyl radical resulted in two discoveries from different fields: the determination of the oxime radical spatial structure and the introduction of an oxime radical into the field of molecular magnetic material design. Oxime radicals are key plausible intermediates in the processes of oxidative CH-functionalization and in the synthesis of functionalized isoxazolines from oximes. Due to the lack of X-ray diffraction data for oxime radicals, the knowledge about their structure is based mainly on indirect approaches, spectroscopic methods (electron paramagnetic resonance and IR), and quantum chemical calculations. The structure of the oxime radical was determined for the first time by stabilizing the diacetyliminoxyl radical in the form of its complex with copper (II) hexafluoroacetylacetonate (Cu(hfac)2), followed by single-crystal X-ray diffraction analysis. Although oxime radicals are known to undergo oxidative coupling with acetylacetonate ligands in transition-metal complexes, a complex is formed with intact hfac ligands. X-ray diffraction studies have shown that the oxime radical is coordinated with copper ions through the oxygen atoms of the carbonyl groups without the direct involvement of the C═N-O• radical moiety. The structure of the coordinated diacetyliminoxyl is in good agreement with the density functional theory (DFT) prediction for free diacetyliminoxyl due to the very weak interaction of the radical molecule with copper ions. Remarkably, both weak ferromagnetic and antiferromagnetic interactions between Cu (II) and oxime radicals have been revealed by modeling the temperature dependence of magnetic susceptibility and confirmed by DFT calculations, rendering diacetyliminoxyl a promising building block for the design of molecular magnets.

16.
Proc Natl Acad Sci U S A ; 117(11): 5853-5860, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123105

RESUMO

The CRISPR-Cas9 nuclease has been widely repurposed as a molecular and cell biology tool for its ability to programmably target and cleave DNA. Cas9 recognizes its target site by unwinding the DNA double helix and hybridizing a 20-nucleotide section of its associated guide RNA to one DNA strand, forming an R-loop structure. A dynamic and mechanical description of R-loop formation is needed to understand the biophysics of target searching and develop rational approaches for mitigating off-target activity while accounting for the influence of torsional strain in the genome. Here we investigate the dynamics of Cas9 R-loop formation and collapse using rotor bead tracking (RBT), a single-molecule technique that can simultaneously monitor DNA unwinding with base-pair resolution and binding of fluorescently labeled macromolecules in real time. By measuring changes in torque upon unwinding of the double helix, we find that R-loop formation and collapse proceed via a transient discrete intermediate, consistent with DNA:RNA hybridization within an initial seed region. Using systematic measurements of target and off-target sequences under controlled mechanical perturbations, we characterize position-dependent effects of sequence mismatches and show how DNA supercoiling modulates the energy landscape of R-loop formation and dictates access to states competent for stable binding and cleavage. Consistent with this energy landscape model, in bulk experiments we observe promiscuous cleavage under physiological negative supercoiling. The detailed description of DNA interrogation presented here suggests strategies for improving the specificity and kinetics of Cas9 as a genome engineering tool and may inspire expanded applications that exploit sensitivity to DNA supercoiling.


Assuntos
Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , DNA/química , Pareamento de Bases , Proteínas Associadas a CRISPR/metabolismo , Clivagem do DNA , Endonucleases/metabolismo , Edição de Genes , Genoma , Estruturas R-Loop , RNA/química , RNA Guia de Cinetoplastídeos/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(18): 10015-10023, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312809

RESUMO

Chronic pain is a highly prevalent disease with poorly understood pathophysiology. In particular, the brain mechanisms mediating the transition from acute to chronic pain remain largely unknown. Here, we identify a subcortical signature of back pain. Specifically, subacute back pain patients who are at risk for developing chronic pain exhibit a smaller nucleus accumbens volume, which persists in the chronic phase, compared to healthy controls. The smaller accumbens volume was also observed in a separate cohort of chronic low-back pain patients and was associated with dynamic changes in functional connectivity. At baseline, subacute back pain patients showed altered local nucleus accumbens connectivity between putative shell and core, irrespective of the risk of transition to chronic pain. At follow-up, connectivity changes were observed between nucleus accumbens and rostral anterior cingulate cortex in the patients with persistent pain. Analysis of the power spectral density of nucleus accumbens resting-state activity in the subacute and chronic back pain patients revealed loss of power in the slow-5 frequency band (0.01 to 0.027 Hz) which developed only in the chronic phase of pain. This loss of power was reproducible across two cohorts of chronic low-back pain patients obtained from different sites and accurately classified chronic low-back pain patients in two additional independent datasets. Our results provide evidence that lower nucleus accumbens volume confers risk for developing chronic pain and altered nucleus accumbens activity is a signature of the state of chronic pain.


Assuntos
Dor nas Costas/fisiopatologia , Dor Crônica/fisiopatologia , Giro do Cíngulo/fisiopatologia , Núcleo Accumbens/fisiopatologia , Adulto , Dor nas Costas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Dor Crônica/diagnóstico por imagem , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Núcleo Accumbens/diagnóstico por imagem , Fatores de Risco
18.
Salud Publica Mex ; 65(2 mar-abr): 175-180, 2023 Mar 10.
Artigo em Espanhol | MEDLINE | ID: mdl-38060863

RESUMO

OBJETIVO: Sistematizar, evaluar y sintetizar la investigación original específica en México sobre la zoonosis por Trypano-soma cruzi, los vectores (Triatominae: Hemiptera: Reduviidae) y la enfermedad de Chagas (EC). Material y métodos. La investigación original fue identificada con PRISMA mediante cuatro sistemas de búsqueda, usando criterios de inclusión, se realizó la asignación a 14 áreas temáticas y fue evaluada mediante criterios técnicos. RESULTADOS: De un total de 1 410 registros, fueron elegidos 659 (46.7%) para la valoración técnica, de los cuales, 221 (15.7%) fueron incluidos como las evidencias de mayor calidad. El buscador PubMed contribuyó con 95% de los registros, mientras que los buscadores BibTri, Lilacs y Scielo aportaron 5%. La tasa de publicación fue constante de 1950 a 1990, con un incremento exponencial de 1995 a 2020. La alta calidad de publicaciones incrementó de 5.3% en 1990 hasta 49.8% en 2020. Los temas de aspectos sistémicos, económicos, antropológicos y sociales de la EC en México fueron los menos representados (8%). CONCLUSIONES: En las dos últimas décadas en México ha incrementado la investigación científica. Sin embargo, son notables las caren- cias en las áreas para poder fundamentar la política pública sanitaria en cuanto a la atención, la prevención y el control de la EC en el país.

19.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834593

RESUMO

The annual turquoise killifish (Nothobranchius furzeri) is a laboratory model organism for neuroscience of aging. In the present study, we investigated for the first time the levels of serotonin and its main metabolite, 5-hydroxyindoleacetic acid, as well as the activities of the key enzymes of its synthesis, tryptophan hydroxylases, and degradation, monoamine oxidase, in the brains of 2-, 4- and 7-month-old male and female N. furzeri. The marked effect of age on the body mass and the level of serotonin, as well as the activities of tryptophan hydroxylases and monoamine oxidase in the brain of killifish were revealed. The level of serotonin decreased in the brain of 7-month-old males and females compared with 2-month-old ones. A significant decrease in the tryptophan hydroxylase activity and an increase in the monoamine oxidase activity in the brain of 7-month-old females compared to 2-month-old females was shown. These findings agree with the age-related alterations in expression of the genes encoding tryptophan hydroxylases and monoamine oxidase. N. furzeri is a suitable model with which to study the fundamental problems of age-related changes of the serotonin system in the brain.


Assuntos
Ciprinodontiformes , Fundulidae , Animais , Masculino , Feminino , Serotonina , Triptofano , Envelhecimento , Encéfalo , Triptofano Hidroxilase , Monoaminoxidase
20.
J Org Chem ; 87(20): 13439-13454, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35675160

RESUMO

Direct irradiation of mono-, di-, and trisubstituted triphenylamine derivatives in acetonitrile as solvent with light of 254 nm has been systematically investigated, revealing that the exo/endo carbazole derivatives were formed as the main photoproducts from modest to good yields for triphenylamines substituted with electron-donor and neutral substituents. The kinetic profiles of the photoreaction were also recorded, and the consumption rate constants (k) were measured. These kinetic parameters show dependence on the nature of the substituents, and linear Hammett correlations were carried out to showcase the substituent effect. On the other hand, the spectroscopic behavior of the electron-rich substituted triphenylamines has been analyzed, suggesting that the fluorescence emission spectra display a mirror image of the lower energy absorption bands, while for those amines bearing electron-acceptor groups the formation of charge-transfer complexes and their fluorescence emissions constitute the main deactivation pathway of the photoreaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA