Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684814

RESUMO

In terms of delivery effectiveness, Vehicular Adhoc NETworks (VANETs) applications have multiple, possibly conflicting, and disparate needs (e.g., latency, reliability, and delivery priorities). Named Data Networking (NDN) has attracted the attention of the research community for effective content retrieval and dissemination in mobile environments such as VANETs. A vehicle in a VANET application is heavily reliant on information about the content, network, and application, which can be obtained from a variety of sources. The information gathered can be used as context to make better decisions. While it is difficult to obtain the necessary context information at the IP network layer, the emergence of NDN is changing the tide. The Pending Information Table (PIT) is an important player in NDN data retrieval. PIT size is the bottleneck due to the limited opportunities provided by current memory technologies. PIT overflow results in service disruptions as new Interest messages cannot be added to PIT. Adaptive, context-aware PIT entry management solutions must be introduced to NDN-based VANETs for effective content dissemination. In this context, our main contribution is a decentralised, context-aware PIT entry management (CPITEM) protocol. The simulation results show that the proposed CPITEM protocol achieves lower Interest Satisfaction Delay and effective PIT utilization based on context when compared to existing PIT entry replacement protocols.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Simulação por Computador , Armazenamento e Recuperação da Informação , Reprodutibilidade dos Testes
2.
Sensors (Basel) ; 21(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300371

RESUMO

Vehicular ad-hoc network (VANET) is a technology that allows ubiquitous mobility to mobile users. Inter-vehicle communication is an integral component of intelligent transportation systems that enables a wide variety of applications where vehicles interact and cooperate with each other, from safety applications to non-safety applications. VANETs applications have different needs (e.g., latency, reliability, delivery priorities, etc.) in terms of delivery effectiveness. In the last decade, named data networking (NDN) gained the attention of the research community for effective content retrieval and dissemination in mobile environments such as VANETs. In NDN, the content's name has a vital role in storing and retrieving the content effectively and efficiently. In NDN-based VANETs, adaptive content dissemination solutions must be introduced that can make decisions related to forwarding, cache management, etc., based on context information represented by a content name. In this context, our main contributions are two-fold: (i) we present the hierarchical context-aware content-naming (CACN) scheme for NDN-based VANETs that enables naming the safety and non-safety applications, and (ii) we present a decentralized context-aware notification (DCN) protocol that broadcasts event notification information for awareness within the application-based geographical area. Simulation results show that the proposed DCN protocol succeeds in achieving reduced transmissions, bandwidth, and energy compared to existing critical contents dissemination protocols.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Comunicação , Simulação por Computador , Reprodutibilidade dos Testes
3.
PLoS One ; 13(4): e0195021, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29649267

RESUMO

In health sector, trust is considered important because it indirectly influences the quality of health care through patient satisfaction, adherence and the continuity of its relationship with health care professionals and the promotion of accurate and timely diagnoses. One of the important requirements of TRSs in the health sector is rating secrecy, which mandates that the identification information about the service consumer should be kept secret to prevent any privacy violation. Anonymity and trust are two imperative objectives, and no significant explicit efforts have been made to achieve both of them at the same time. In this paper, we present a framework for solving the problem of reconciling trust with anonymity in the health sector. Our solution comprises Anonymous Reputation Management (ARM) protocol and Context-aware Trustworthiness Assessment (CTA) protocol. ARM protocol ensures that only those service consumers who received a service from a specific service provider provide a recommendation score anonymously with in the specified time limit. The CTA protocol computes the reputation of a user as a service provider and as a recommender. To determine the correctness of the proposed ARM protocol, formal modelling and verification are performed using High Level Petri Nets (HLPN) and Z3 Solver. Our simulation results verify the accuracy of the proposed context-aware trust assessment scheme.


Assuntos
Segurança Computacional , Confidencialidade , Serviços de Saúde/normas , Privacidade , Algoritmos , Simulação por Computador , Humanos , Sistemas de Informação , Internet , Modelos Teóricos , Reprodutibilidade dos Testes , Software , Confiança
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA