Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Am Chem Soc ; 146(12): 7915-7921, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488295

RESUMO

A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.


Assuntos
Ferro , Superóxidos , Compostos Ferrosos , Oxigênio
2.
Biochemistry ; 62(9): 1484-1496, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37014173

RESUMO

The nematode Caenorhabditis elegans contains genes for two types of ferritin (ftn-1 and ftn-2) that express FTN-1 and FTN-2. We have expressed and purified both proteins and characterized them by X-ray crystallography, cryo-electron microscopy, transmission electron microscopy, dynamic light scattering, and kinetically by oxygen electrode and UV-vis spectroscopy. Both show ferroxidase activity, but although they have identical ferroxidase active sites, FTN-2 is shown to react approximately 10 times faster than FTN-1, with L-type ferritin character over longer time periods. We hypothesize that the large variation in rate may be due to differences in the three- and four-fold channels into the interior of the protein 24-mer. FTN-2 is shown to have a wider entrance into the three-fold channel than FTN-1. Additionally, the charge gradient through the channel of FTN-2 is more pronounced, with Asn and Gln residues in FTN-1 replaced by Asp and Glu residues in FTN-2. Both FTN-1 and FTN-2 have an Asn residue near the ferroxidase active site that is a Val in most other species, including human H ferritin. This Asn residue has been observed before in ferritin from the marine pennate diatom Pseudo-mitzchia multiseries. By replacing this Asn residue with a Val in FTN-2, we show that the reactivity decreases over long time scales. We therefore propose that Asn106 is involved in iron transport from the ferroxidase active site to the central cavity of the protein.


Assuntos
Caenorhabditis elegans , Ferritinas , Animais , Humanos , Ferritinas/química , Caenorhabditis elegans/metabolismo , Ferro/química , Ceruloplasmina/metabolismo , Microscopia Crioeletrônica
3.
Inorg Chem ; 62(38): 15719-15735, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37691232

RESUMO

Spin crossover (SCO) complexes can reversibly switch between low spin (LS) and high spin (HS) states, affording possible applications in sensing, displays, and molecular electronics. Dinuclear SCO complexes with access to [LS-LS], [LS-HS], and [HS-HS] states may offer increased levels of functionality. The nature of the SCO interconversion in dinuclear complexes is influenced by the local electronic environment. We report the synthesis and characterization of [{FeIII(tpa)}2spiro](PF6)2 (1), [{FeIII(tpa)}2Br4spiro](PF6)2 (2), and [{FeIII(tpa)}2thea](PF6)2 (3) (tpa = tris(2-pyridylmethyl)amine, spiroH4 = 3,3,3',3'-tetramethyl-1,1'-spirobi(indan)-5,5',6,6'-tetraol, Br4spiroH4 = 3,3,3',3'-tetramethyl-1,1'-spirobi(indan)-4,4',7,7'-tetrabromo-5,5',6,6'-tetraol, theaH4 = 2,3,6,7-tetrahydroxy-9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene), utilizing non-conjugated bis(catecholate) bridging ligands. In the solid state, magnetic and structural analysis shows that 1 remains in the [HS-HS] state, while 2 and 3 undergo a partial SCO interconversion upon cooling from room temperature involving the mixed [LS-HS] state. In solution, all complexes undergo SCO from [HS-HS] at room temperature, via [LS-HS] to mixtures including [LS-LS] at 77 K, with the extent of SCO increasing in the order 1 < 2 < 3. Gas phase density functional theory calculations suggest a [LS-LS] ground state for all complexes, with the [LS-HS] and [HS-HS] states successively destabilized. The relative energy separations indicate that ligand field strength increases following spiro4- < Br4spiro4- < thea4-, consistent with solid-state magnetic and EPR behavior. All three complexes show stabilization of the [LS-HS] state in relation to the midpoint energy between [LS-LS] and [HS-HS]. The relative stability of the [LS-HS] state increases with increasing ligand field strength of the bis(catecholate) bridging ligand in the order 1 < 2 < 3. The bromo substituents of Br4spiro4- increase the ligand field strength relative to spiro4-, while the stronger ligand field provided by thea4- arises from extension of the overlapping π-orbital system across the two catecholate units. This study highlights how SCO behavior in dinuclear complexes can be modulated by the bridging ligand, providing useful insights for the design of molecules that can be interconverted between more than two states.

4.
Biochem J ; 478(3): 669-684, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33480393

RESUMO

Mutation of cytochrome c in humans causes mild autosomal dominant thrombocytopenia. The role of cytochrome c in platelet formation, and the molecular mechanism underlying the association of cytochrome c mutations with thrombocytopenia remains unknown, although a gain-of-function is most likely. Cytochrome c contributes to several cellular processes, with an exchange between conformational states proposed to regulate changes in function. Here, we use experimental and computational approaches to determine whether pathogenic variants share changes in structure and function, and to understand how these changes might occur. Three pathogenic variants (G41S, Y48H, A51V) cause an increase in apoptosome activation and peroxidase activity. Molecular dynamics simulations of these variants, and two non-naturally occurring variants (G41A, G41T), indicate that increased apoptosome activation correlates with the increased overall flexibility of cytochrome c, particularly movement of the Ω loops. Crystal structures of Y48H and G41T complement these studies which overall suggest that the binding of cytochrome c to apoptotic protease activating factor-1 (Apaf-1) may involve an 'induced fit' mechanism which is enhanced in the more conformationally mobile variants. In contrast, peroxidase activity did not significantly correlate with protein dynamics. Thus, the mechanism by which the variants increase peroxidase activity is not related to the conformational dynamics of the native hexacoordinate state of cytochrome c. Recent molecular dynamics data proposing conformational mobility of specific cytochrome c regions underpins changes in reduction potential and alkaline transition pK was not fully supported. These data highlight that conformational dynamics of cytochrome c drive some but not all of its properties and activities.


Assuntos
Apoptose/fisiologia , Citocromos c/química , Mutação de Sentido Incorreto , Mutação Puntual , Substituição de Aminoácidos , Apoptossomas , Cristalografia por Raios X , Citocromos c/genética , Citocromos c/isolamento & purificação , Citocromos c/metabolismo , Humanos , Ligação de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Células U937
5.
Chemistry ; 27(55): 13793-13806, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310770

RESUMO

Thiol dioxygenases are important enzymes for human health; they are involved in the detoxification and catabolism of toxic thiol-containing natural products such as cysteine. As such, these enzymes have relevance to the development of Alzheimer's and Parkinson's diseases in the brain. Recent crystal structure coordinates of cysteine and 3-mercaptopropionate dioxygenase (CDO and MDO) showed major differences in the second-coordination spheres of the two enzymes. To understand the difference in activity between these two analogous enzymes, we created large, active-site cluster models. We show that CDO and MDO have different iron(III)-superoxo-bound structures due to differences in ligand coordination. Furthermore, our studies show that the differences in the second-coordination sphere and particularly the position of a positively charged Arg residue results in changes in substrate positioning, mobility and enzymatic turnover. Furthermore, the substrate scope of MDO is explored with cysteinate and 2-mercaptosuccinic acid and their reactivity is predicted.


Assuntos
Dioxigenases , Domínio Catalítico , Cisteína , Cisteína Dioxigenase/metabolismo , Compostos Férricos , Humanos
6.
Inorg Chem ; 59(6): 3619-3630, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32124614

RESUMO

A 2-D coordination framework, (NEt4)2[Fe2(fan)3] (1·5(acetone); H2fan = 3,6-difluoro-2,5-dihydroxy-1,4-benzoquinone), was synthesized and structurally characterized. The compound is structurally analogous to a formerly elucidated framework, (NEt4)2[Fe2(can)3] (H2can = 3,6-dichloro-2,5-dihydroxy-1,4-benzoquinone), and adopts a 2-D (6,3) topology with the symmetrical stacking of [Fe2(fan)3]2- sheets that are held in position by the NEt4+ cations between the sheets. The investigation of the dc and ac magnetic properties of 1·5(acetone) revealed ferromagnetic ordering behavior and slow magnetization relaxation, as evinced from ac susceptibility measurements. Furthermore, the exposure of 1·5(acetone) to air led to the formation of a heptahydrate 1·7H2O which displayed distinct magnetic properties. The study of the redox state and extent of delocalization in 1·5(acetone) was undertaken via crystallography, in combination with Mössbauer and vis-NIR spectroscopy, to reveal the mixed-valence and delocalized nature of the as-synthesized material. As a result, the conductivity studies conducted on a pressed pellet showed a relatively high conductivity of 1.8 × 10-2 S cm-1 (300 K). In order to compare structurally related anilate-based structures, a relationship among the redox state, spectroscopic properties, and electronic properties was elucidated in this work. A preliminary investigation of 1·5(acetone) as a candidate anode material in lithium ion batteries revealed a high reversible capacity of 676.6 mAh g-1 and high capacity retention.

7.
Biochemistry ; 58(19): 2398-2407, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31045343

RESUMO

Thiol dioxygenases make up a class of ferrous iron-dependent enzymes that oxidize thiols to their corresponding sulfinates. X-ray diffraction structures of cysteine-bound cysteine dioxygenase show how cysteine is coordinated via its thiolate and amine to the iron and oriented correctly for O atom transfer. There are currently no structures with 3-mercaptopropionic acid or mercaptosuccinic acid bound to their respective enzymes, 3-mercaptopropionate dioxygenase or mercaptosuccinate dioxygenase. Sequence alignments and comparisons of known structures have led us to postulate key structural features that define substrate specificity. Here, we compare the rates and reactivities of variants of Rattus norvegicus cysteine dioxygenase and 3-mercaptopropionate dioxygenases from Pseudomonas aureginosa and Ralstonia eutropha (JMP134) and show how binary variants of three structural features correlate with substrate specificity and reactivity. They are (1) the presence or absence of a cis-peptide bond between residues Ser158 and Pro159, (2) an Arg or Gln at position 60, and (3) a Cys or Arg at position 164 (all RnCDO numbering). Different permutations of these features allow sulfination of l-cysteine, 3-mercaptopropionic acid, and ( R)-mercaptosuccinic acid to be promoted or impeded.


Assuntos
Ácido 3-Mercaptopropiônico/química , Cisteína Dioxigenase/química , Compostos de Sulfidrila/química , Sequência de Aminoácidos , Animais , Catálise , Cristalografia por Raios X , Cupriavidus necator/química , Cisteína/química , Ferro/química , Cinética , Simulação de Acoplamento Molecular , Oxirredução , Pseudomonas/química , Ratos , Alinhamento de Sequência , Especificidade por Substrato
8.
Biochemistry ; 58(7): 974-986, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30585477

RESUMO

The heme enzyme indoleamine 2,3-dioxygenase-1 (IDO1) catalyzes the first reaction of l-tryptophan oxidation along the kynurenine pathway. IDO1 is a central immunoregulatory enzyme with important implications for inflammation, infectious disease, autoimmune disorders, and cancer. Here we demonstrate that IDO1 is a mammalian nitrite reductase capable of chemically reducing nitrite to nitric oxide (NO) under hypoxia. Ultraviolet-visible absorption and resonance Raman spectroscopy showed that incubation of dithionite-reduced, ferrous-IDO1 protein (FeII-IDO1) with nitrite under anaerobic conditions resulted in the time-dependent formation of an FeII-nitrosyl IDO1 species, which was inhibited by substrate l-tryptophan, dependent on the concentration of nitrite or IDO1, and independent of the concentration of the reductant, dithionite. The bimolecular rate constant for IDO1 nitrite reductase activity was determined as 5.4 M-1 s-1 (pH 7.4, 23 °C), which was comparable to that measured for myoglobin (3.6 M-1 s-1; pH 7.4, 23 °C), an efficient and biologically important mammalian heme-based nitrite reductase. IDO1 nitrite reductase activity was pH-dependent but differed with myoglobin in that it showed a reduced proton dependency at pH >7. Electron paramagnetic resonance studies measuring NO production showed that the conventional IDO1 dioxygenase reducing cofactors, ascorbate and methylene blue, enhanced IDO1's nitrite reductase activity and the time- and IDO1 concentration-dependent release of NO in a manner inhibited by l-tryptophan or the IDO inhibitor 1-methyl-l-tryptophan. These data identify IDO1 as an efficient mammalian nitrite reductase that is capable of generating NO under anaerobic conditions. IDO1's nitrite reductase activity may have important implications for the enzyme's biological actions when expressed within hypoxic tissues.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Nitrito Redutases/metabolismo , Anaerobiose , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Heme/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitrito Redutases/química , Nitritos/química , Nitritos/metabolismo , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta , Análise Espectral Raman
9.
Inorg Chem ; 58(15): 9557-9561, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31313577

RESUMO

An iron(III) methoxide complex reacts with para-substituted triarylmethyl radicals to give iron(II) and methoxyether products. Second-order rate constants for the radical derivatives were obtained. Hammett and Marcus plots suggest the radical transfer reactions proceed via a concerted process. Calculations support the concerted nature of these reactions involving a single transition state with no initial charge transfer. These findings have implications for the radical "rebound" step invoked in nonheme iron oxygenases, halogenases, and related synthetic catalysts.


Assuntos
Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Biocatálise , Compostos Férricos/química , Compostos Ferrosos/química , Estrutura Molecular , Oxirredutases/química , Oxigênio/química , Oxigenases/química
10.
Angew Chem Int Ed Engl ; 58(34): 11811-11815, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31233272

RESUMO

Molecular magnetic switches are expected to form the functional components of future nanodevices. Herein we combine detailed (photo-) crystallography and magnetic studies to reveal the unusual switching properties of an iron(III) complex, between low (LS) and high (HS) spin states. On cooling, it exhibits a partial thermal conversion associated with a reconstructive phase transition from a [HS-HS] to a [LS-HS] phase with a hysteresis of 25 K. Photoexcitation at low temperature allows access to a [LS-LS] phase, never observed at thermal equilibrium. As well as reporting the first iron(III) spin crossover complex to exhibit reverse-LIESST (light-induced excited spin state trapping), we also reveal a hidden hysteresis of 30 K between the hidden [LS-LS] and [HS-LS] phases. Moreover, we demonstrate that FeIII spin-crossover (SCO) complexes can be just as effective as FeII systems, and with the advantage of being air-stable, they are ideally suited for use in molecular electronics.

11.
J Am Chem Soc ; 140(44): 14807-14822, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30346746

RESUMO

The synthesis of four new FeII(N4S(thiolate)) complexes as models of the thiol dioxygenases are described. They are composed of derivatives of the neutral, tridentate ligand triazacyclononane (R3TACN; R = Me, iPr) and 2-aminobenzenethiolate (abtx; X = H, CF3), a non-native substrate for thiol dioxygenases. The coordination number of these complexes depends on the identity of the TACN derivative, giving 6-coordinate (6-coord) complexes for FeII(Me3TACN)(abtx)(OTf) (1: X = H; 2: X = CF3) and 5-coordinate (5-coord) complexes for [FeII(iPr3TACN)(abtx)](OTf) (3: X = H; 4: X = CF3). Complexes 1-4 were examined by UV-vis, 1H/19F NMR, and Mössbauer spectroscopies, and density functional theory (DFT) calculations were employed to support the data. Mössbauer spectroscopy reveals that the 6-coord 1-2 and 5-coord 3- 4 exhibit distinct spectra, and these data are compared with that for cysteine-bound CDO, helping to clarify the coordination environment of the cys-bound FeII active site. Reaction of 1 or 2 with O2 at -95 °C leads to S-oxygenation of the abt ligand, and in the case of 2, a rare di(sulfinato)-bridged complex, [Fe2III(µ-O)((2-NH2) p-CF3C6H3SO2)2](OTf)2 ( 5), was obtained. Parallel enzymatic studies on the CDO variant C93G were carried out with the abt substrate and show that reaction with O2 leads to disulfide formation, as opposed to S-oxygenation. The combined model and enzyme studies show that the thiol dioxygenases can operate via a 6-coord FeII center, in contrast to the accepted mechanism for nonheme iron dioxygenases, and that proper substrate chelation to Fe appears to be critical for S-oxygenation.


Assuntos
Dioxigenases/metabolismo , Compostos Ferrosos/metabolismo , Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Teoria da Densidade Funcional , Dioxigenases/química , Compostos Ferrosos/química , Modelos Moleculares , Conformação Molecular , Oxigênio/química , Compostos de Sulfidrila/química
12.
J Am Chem Soc ; 140(12): 4191-4194, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29537258

RESUMO

A nonheme iron(III) terminal methoxide complex, [FeIII(N3PyO2Ph)(OCH3)]ClO4, was synthesized. Reaction of this complex with the triphenylmethyl radical (Ph3C•) leads to formation of Ph3COCH3 and the one-electron-reduced iron(II) center, as seen by UV-vis, EPR, 1H NMR, and Mössbauer spectroscopy. These results indicate that homolytic Fe-O bond cleavage occurs together with C-O bond formation, providing a direct observation of the "radical rebound" process proposed for both biological and synthetic nonheme iron centers.


Assuntos
Compostos Férricos/química , Compostos Férricos/síntese química , Radicais Livres/química , Modelos Moleculares , Conformação Molecular
13.
Inorg Chem ; 57(17): 11068-11076, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30113168

RESUMO

In this study we exploit the flexible nature of porous coordination polymers (PCPs) with integrated spin crossover (SCO) properties to manipulate the multistability of spin-state switching profiles. We previously reported the two-dimensional Hofmann-type framework [Fe(thtrz)2Pd(CN)4]·EtOH,H2O (1·EtOH,H2O), N-thiophenylidene-4 H-1,2,4-triazol-4-amine), displaying a distinctive two-step SCO profile driven by extreme elastic frustration. Here, we reveal a reversible release mechanism for this elastic frustration via stepwise guest removal from the parent phase (1·EtOH,H2O → 1·H2O → 1·Ø). Parallel variable temperature structural and magnetic susceptibility measurements reveal a synergistic framework flexing and "on-off" switching of multistep SCO character concomitant with the onset of guest evacuation. In particular, the two-step SCO properties in 1·EtOH,H2O are deactivated such that both the partially solvated (1·H2O) and desolvated (1·Ø) phases show abrupt and hysteretic one-step SCO behaviors with differing transition temperatures (1·H2O: T1/2↓: 215 T1/2↑: 235 K; 1·Ø: T1/2↓: 170 T1/2↑: 182 K). This "on-off" elastic frustration switching is also reflected in the light-induced excited spin state trapping (LIESST) properties of 1·EtOH,H2O and 1·Ø, with nonquantitative (ca. 50%, i.e., LS ↔ 1:1 HS:LS) and quantitative (ca. 100%, LS ↔ HS) photoinduced spin state conversion achieved under light irradiation (510 nm at 10 K), respectively. Conversely, the two-step SCO properties are retained in the water saturated phase 1·3H2O but with a subtle shift in transition temperatures. Comparative analysis of this and related materials reveals the distinct roles that indirect and direct guest interactions play in inducing, stabilizing, and quantifying elastic frustration and the importance of lattice flexibility in these porous framework architectures.

14.
Chemistry ; 23(29): 7052-7065, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28474778

RESUMO

A family of halogen-substituted Schiff base iron(II) complexes, [FeII (qsal-X)2 ], (qsal-X=5-X-N-(8-quinolyl)salicylaldimines)) in which X=F (1), Cl (2), Br (3) or I (4) has been investigated in detail. Compound 1 shows a temperature invariant high spin state, whereas the others all show abrupt spin transitions, at or above room temperature, namely, 295 K (X=I) up to 342 K (X=Br), these being some of the highest T1/2 values obtained, to date, for FeII N/O species. We have recently reported subtle symmetry breaking in [FeII (qsal-Cl)2 ] 2 with two spin transition steps occurring at 308 and 316 K. A photomagnetic study reveals almost full HS conversion of [FeII (qsal-I)2 ] 4 at low temperature (T(LIESST)=54 °K). The halogen substitution effects on the magnetic properties, as well as the crystal packing of the [FeII (qsal-X)2 ] compounds and theoretical calculations, are discussed in depth, giving important knowledge for the design of new spin crossover materials. In comparison to the well known iron(III) analogues, [FeIII (qsal-X)2 ]+ , the two extra π-π and P4AE interactions found in [FeII (qsal-X)2 ] compounds, are believed to be accountable for the spin transitions occurring at ambient temperatures.

15.
Inorg Chem ; 56(15): 9025-9035, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28723082

RESUMO

A pair of coordination polymers of composition (NBu4)2[M2(fan)3] (fan = fluoranilate; M = Fe and Zn) were synthesized and structurally characterized. In each case the compound consists of a pair of interpenetrating three-dimensional, (10,3)-a networks in which metal centers are linked by chelating/bridging fluoranilate ligands. Tetrabutylammonium cations are located in the spaces between the two networks. Despite the structural similarity, significant differences exist between (NBu4)2[Fe2(fan)3] and (NBu4)2[Zn2(fan)3] with respect to the oxidation states of the metal centers and ligands. For (NBu4)2[Fe2(fan)3] the structure determination as well as Mössbauer spectroscopy indicate the oxidation state for the Fe is close to +3, which contrasts with the +2 state for the Zn analogue. The differences between the two compounds extends to the ligands, with the Zn network involving only fluoranilate dianions, whereas the average oxidation state for the fluoranilate in the Fe network lies somewhere between -2 and -3. Magnetic studies on the Fe compound indicate short-range ordering. Electrochemical and spectro-electrochemical investigations indicate that the fluoranilate ligand is redox-active in both complexes; a reduced form of (NBu4)2[Fe2(fan)3] was generated by chemical reduction. Conductivity measurements indicate that (NBu4)2[Fe2(fan)3] is a semiconductor, which is attributed to the mixed valency of the fluoranilate ligands.

16.
Biochemistry ; 55(9): 1362-71, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26878277

RESUMO

Thiol dioxygenases catalyze the synthesis of sulfinic acids in a range of organisms from bacteria to mammals. A thiol dioxygenase from the bacterium Pseudomonas aeruginosa oxidizes both 3-mercaptopropionic acid and cysteine, with a ∼70 fold preference for 3-mercaptopropionic acid over all pHs. This substrate reactivity is widened compared to other thiol dioxygenases and was exploited in this investigation of the residues important for activity. A simple model incorporating two protonation events was used to fit profiles of the Michaelis-Menten parameters determined at different pH values for both substrates. The pKs determined using plots of k(cat)/Km differ at low pH, but not in a way easily attributable to protonation of the substrate alone and share a common value at higher pH. Plots of k(cat) versus pH are also quite different at low pH showing the monoprotonated ES complexes with 3-mercaptopropionic acid and cysteine have different pKs. At higher pH, k(cat) decreases sigmoidally with a similar pK regardless of substrate. Loss of reactivity at high pH is attributed to deprotonation of tyrosine 159 and its influence on dioxygen binding. A mechanism is proposed by which deprotonation of tyrosine 159 both blocks oxygen binding and concomitantly promotes cystine formation. Finally, the role of tyrosine 159 was further probed by production of a G95C variant that is able to form a cysteine-tyrosine crosslink homologous to that found in mammalian cysteine dioxygenases. Activity of this variant is severely impaired. Crystallography shows that when un-crosslinked, the cysteine thiol excludes tyrosine 159 from its native position, while kinetic analysis shows that the thioether bond impairs reactivity of the crosslinked form.


Assuntos
Ácido 3-Mercaptopropiônico/química , Proteínas de Bactérias/química , Dioxigenases/química , Pseudomonas aeruginosa/enzimologia , Ácido 3-Mercaptopropiônico/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Cristalografia por Raios X , Dioxigenases/isolamento & purificação , Concentração de Íons de Hidrogênio , Estrutura Secundária de Proteína , Especificidade por Substrato/fisiologia
17.
J Biol Chem ; 290(40): 24424-37, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26272617

RESUMO

Thiol dioxygenation is the initial oxidation step that commits a thiol to important catabolic or biosynthetic pathways. The reaction is catalyzed by a family of specific non-heme mononuclear iron proteins each of which is reported to react efficiently with only one substrate. This family of enzymes includes cysteine dioxygenase, cysteamine dioxygenase, mercaptosuccinate dioxygenase, and 3-mercaptopropionate dioxygenase. Using sequence alignment to infer cysteine dioxygenase activity, a cysteine dioxygenase homologue from Pseudomonas aeruginosa (p3MDO) has been identified. Mass spectrometry of P. aeruginosa under standard growth conditions showed that p3MDO is expressed in low levels, suggesting that this metabolic pathway is available to the organism. Purified recombinant p3MDO is able to oxidize both cysteine and 3-mercaptopropionic acid in vitro, with a marked preference for 3-mercaptopropionic acid. We therefore describe this enzyme as a 3-mercaptopropionate dioxygenase. Mössbauer spectroscopy suggests that substrate binding to the ferrous iron is through the thiol but indicates that each substrate could adopt different coordination geometries. Crystallographic comparison with mammalian cysteine dioxygenase shows that the overall active site geometry is conserved but suggests that the different substrate specificity can be related to replacement of an arginine by a glutamine in the active site.


Assuntos
Ácido 3-Mercaptopropiônico/química , Proteínas de Bactérias/química , Cisteína Dioxigenase/química , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Ferro/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Oxigênio/química , Consumo de Oxigênio , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrofotometria , Especificidade por Substrato , Compostos de Sulfidrila
18.
J Am Chem Soc ; 138(39): 12791-12802, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27656776

RESUMO

The synthesis and reactivity of a series of mononuclear nonheme iron complexes that carry out intramolecular aromatic C-F hydroxylation reactions is reported. The key intermediate prior to C-F hydroxylation, [FeIV(O)(N4Py2Ar1)](BF4)2 (1-O, Ar1 = -2,6-difluorophenyl), was characterized by single-crystal X-ray diffraction. The crystal structure revealed a nonbonding C-H···O═Fe interaction with a CH3CN molecule. Variable-field Mössbauer spectroscopy of 1-O indicates an intermediate-spin (S = 1) ground state. The Mössbauer parameters for 1-O include an unusually small quadrupole splitting for a triplet FeIV(O) and are reproduced well by density functional theory calculations. With the aim of investigating the initial step for C-F hydroxylation, two new ligands were synthesized, N4Py2Ar2 (L2, Ar2 = -2,6-difluoro-4-methoxyphenyl) and N4Py2Ar3 (L3, Ar3 = -2,6-difluoro-3-methoxyphenyl), with -OMe substituents in the meta or ortho/para positions with respect to the C-F bonds. FeII complexes [Fe(N4Py2Ar2)(CH3CN)](ClO4)2 (2) and [Fe(N4Py2Ar3)(CH3CN)](ClO4)2 (3) reacted with isopropyl 2-iodoxybenzoate to give the C-F hydroxylated FeIII-OAr products. The FeIV(O) intermediates 2-O and 3-O were trapped at low temperature and characterized. Complex 2-O displayed a C-F hydroxylation rate similar to that of 1-O. In contrast, the kinetics (via stopped-flow UV-vis) for complex 3-O displayed a significant rate enhancement for C-F hydroxylation. Eyring analysis revealed the activation barriers for the C-F hydroxylation reaction for the three complexes, consistent with the observed difference in reactivity. A terminal FeII(OH) complex (4) was prepared independently to investigate the possibility of a nucleophilic aromatic substitution pathway, but the stability of 4 rules out this mechanism. Taken together the data fully support an electrophilic C-F hydroxylation mechanism.

19.
J Biol Inorg Chem ; 21(4): 501-10, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27193596

RESUMO

Cysteine dioxygenase is a non-heme mononuclear iron enzyme with unique structural features, namely an intramolecular thioether cross-link between cysteine 93 and tyrosine 157, and a disulfide bond between substrate L-cysteine and cysteine 164 in the entrance channel to the active site. We investigated how these posttranslational modifications affect catalysis through a kinetic, crystallographic and computational study. The enzyme kinetics of a C164S variant are identical to WT, indicating that disulfide formation at C164 does not significantly impair access to the active site at physiological pH. However, at high pH, the cysteine-tyrosine cross-link formation is enhanced in C164S. This supports the view that disulfide formation at position 164 can limit access to the active site. The C164S variant yielded crystal structures of unusual clarity in both resting state and with cysteine bound. Both show that the iron in the cysteine-bound complex is a mixture of penta- and hexa-coordinate with a water molecule taking up the final site (60 % occupancy), which is where dioxygen is believed to coordinate during turnover. The serine also displays stronger hydrogen bond interactions to a water bound to the amine of the substrate cysteine. However, the interactions between cysteine and iron appear unchanged. DFT calculations support this and show that WT and C164S have similar binding energies for the water molecule in the final site. This variant therefore provides evidence that WT also exists in an equilibrium between penta- and hexa-coordinate forms and the presence of the sixth ligand does not strongly affect dioxygen binding.


Assuntos
Cisteína Dioxigenase/química , Cisteína/química , Animais , Domínio Catalítico , Cisteína/metabolismo , Cisteína Dioxigenase/isolamento & purificação , Cisteína Dioxigenase/metabolismo , Modelos Moleculares , Teoria Quântica , Ratos , Software
20.
Chemistry ; 22(4): 1322-33, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26662933

RESUMO

Heteroleptic iron(III) complexes of formula [Fe(qsal)(thsa)]⋅solvent have been synthesized: [Fe(qsal)(thsa)]⋅0.4 BuOH (1), [Fe(qsal)(thsa)]⋅0.5 MeCN (2) and [Fe(qsal)(thsa)]⋅0.5 THF, (3). The latter two show partial solvent loss at room temperature to yield [Fe(qsal)(thsa)]⋅0.1 MeCN (2') and [Fe(qsal)(thsa)]⋅0.1 THF (3'), respectively. This family maintains a structural integrity which is analogous over different degrees of solvation, a rare occurrence in discrete molecular species. Uniquely, removal of MeCN from compound 2 leads to retention of crystallinity yielding the isostructural, fully desolvated compound [Fe(qsal)(thsa)] (2'') and a new high spin polymorph, 4. To the best of our knowledge, this is the first compound that forms polymorphs through a desolvation process. The desolvated mixture, 2'' and 4, is porous and can reabsorb MeCN and give rise to 2' again. This illustrates the reversible single-crystal-to-single-crystal transformation of two polymorphs back to a purely original phase, 2''+4↔2'. The structural, magnetic and Mossbauer features of the various samples are described in terms of spin crossover.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA