RESUMO
In this study, the plausible role of trimethylamine N-oxide (TMAO), a microbiota metabolite, was investigated as a link between peripheral inflammation and the inflammation of the central nervous system using different cell lines. TMAO treatment favored the differentiation of adipocytes from preadipocytes (3T3-L1 cell line). In macrophages (RAW 264.7 cell line), which infiltrate adipose tissue in obesity, TMAO increased the expression of pro-inflammatory cytokines. The treatment with 200 µM of TMAO seemed to disrupt the blood-brain barrier as it induced a significant decrease in the expression of occludin in hCMECs. TMAO also increased the expression of pro-inflammatory cytokines in primary neuronal cultures, induced a pro-inflammatory state in primary microglial cultures, and promoted phagocytosis. Data obtained from this project suggest that microbial dysbiosis and increased TMAO secretion could be a key link between peripheral and central inflammation. Thus, TMAO-decreasing compounds may be a promising therapeutic strategy for neurodegenerative diseases.
Assuntos
Inflamação , Metilaminas , Humanos , Inflamação/metabolismo , Metilaminas/farmacologia , Metilaminas/metabolismo , Citocinas , Projetos de PesquisaRESUMO
Recent investigations have increased the interest on the connection between the microorganisms inhabiting the gut (gut microbiota) and human health. An imbalance of the intestinal bacteria representation (dysbiosis) could lead to different diseases, ranging from obesity and diabetes, to neurological disorders including Alzheimer's disease (AD). The term "gut-brain axis" refers to a crosstalk between the brain and the gut involving multiple overlapping pathways, including the autonomic, neuroendocrine, and immune systems as well as bacterial metabolites and neuromodulatory molecules. Through this pathway, microbiota can influence the onset and progression of neuropathologies such as AD. This review discusses the possible interaction between the gut microbiome and AD, focusing on the role of gut microbiota in neuroinflammation, cerebrovascular degeneration and Aß clearance.
Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doença de Alzheimer/patologia , Bactérias/metabolismo , Encéfalo/metabolismo , Disbiose , HumanosRESUMO
It has been established that ageing is the major risk factor for cognitive deficiency and it is becoming increasingly evident that insulin resistance is another factor. Biological plausibility for a link between insulin resistance and dementia is relevant for understanding disease etiology, and to form bases for prevention efforts to decrease disease burden. In the present study, peripheral and central insulin resistance was found in SAMP8 mice (aging mouse model) accompanied by cognitive deficiencies. Furthermore, a marked peripheral inflammatory state was observed in SAMP8 mice, followed by neuroinflammation that could be due to a higher cytokine leaking into the brain across an aging-disrupted blood brain barrier. Moreover, aging-induced gut dysbiosis produces higher TMAO that could also contribute to the peripheral and central inflammatory tone as well as to the cognitive deficiencies observed in SAMP8 mice. All those alterations were reversed by DMB, a treatment that decreases TMAO levels. Data obtained from this project suggest that microbial dysbiosis and increased TMAO secretion could be a key link between aging, insulin resistance and dementia. Thus, pharmacological intervention that leads to decreased TMAO levels, such as DMB, could open a new avenue for the future treatment of neurodegenerative diseases.
Assuntos
Demência , Microbioma Gastrointestinal , Resistência à Insulina , Animais , Cognição , Modelos Animais de Doenças , Disbiose , Metilaminas , CamundongosRESUMO
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease. AD is the main cause of dementia worldwide and aging is the main risk factor for developing the illness. AD classical diagnostic criteria rely on clinical data. However, the development of a biological definition of AD using biomarkers that reflect the underling neuropathology is needed. Content: The aim of this review is to describe the main outcomes when measuring classical and novel biomarkers in biological fluids or neuroimaging. Summary: Nowadays, there are three classical biomarkers for the diagnosis of AD: Aß42, t-Tau and p-Tau. The diagnostic use of cerebrospinal fluid biomarkers is limited due to invasive collection by lumbar puncture with potential side effects. Plasma/serum measurements are the gold standard in clinics, because they are minimally invasive and, in consequence, easily collected and processed. The two main proteins implicated in the pathological process, Aß and Tau, can be visualized using neuroimaging techniques, such as positron emission tomography. Outlook: As it is currently accepted that AD starts decades before clinical symptoms could be diagnosed, the opportunity to detect biological alterations prior to clinical symptoms would allow early diagnosis or even perhaps change treatment possibilities.
RESUMO
Trimethylamine N-oxide (TMAO) is a molecule generated from choline, betaine, and carnitine via gut microbial metabolism. The plasma level of TMAO is determined by several factors including diet, gut microbial flora, drug administration and liver flavin monooxygenase activity. In humans, recent clinical studies evidence a positive correlation between elevated plasma levels of TMAO and an increased risk for major adverse cardiovascular events. A direct correlation between increased TMAO levels and neurological disorders has been also hypothesized. Several therapeutic strategies are being explored to reduce TMAO levels, including use of oral broad spectrum antibiotics, promoting the growth of bacteria that use TMAO as substrate and the development of target-specific molecules. Despite the accumulating evidence, it is questioned whether TMAO is the mediator of a bystander in the disease process. Thus, it is important to undertake studies to establish the role of TMAO in human health and disease. In this article, we reviewed dietary sources and metabolic pathways of TMAO, as well as screened the studies suggesting possible involvement of TMAO in the etiology of cardiovascular and neurological disorders, underlying the importance of TMAO mediating inflammatory processes. Finally, the potential utility of TMAO as therapeutic target is also analyzed.