Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 413
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(4): 857-868.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29336889

RESUMO

The mechanism by which the wild-type KRAS allele imparts a growth inhibitory effect to oncogenic KRAS in various cancers, including lung adenocarcinoma (LUAD), is poorly understood. Here, using a genetically inducible model of KRAS loss of heterozygosity (LOH), we show that KRAS dimerization mediates wild-type KRAS-dependent fitness of human and murine KRAS mutant LUAD tumor cells and underlies resistance to MEK inhibition. These effects are abrogated when wild-type KRAS is replaced by KRASD154Q, a mutant that disrupts dimerization at the α4-α5 KRAS dimer interface without changing other fundamental biochemical properties of KRAS, both in vitro and in vivo. Moreover, dimerization has a critical role in the oncogenic activity of mutant KRAS. Our studies provide mechanistic and biological insights into the role of KRAS dimerization and highlight a role for disruption of dimerization as a therapeutic strategy for KRAS mutant cancers.


Assuntos
Adenocarcinoma de Pulmão , Inibidores Enzimáticos/farmacologia , Neoplasias Pulmonares , MAP Quinase Quinase Quinases/antagonistas & inibidores , Mutação de Sentido Incorreto , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/enzimologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Camundongos Knockout , Multimerização Proteica/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Cell ; 160(5): 977-989, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723171

RESUMO

There is a lack of effective predictive biomarkers to precisely assign optimal therapy to cancer patients. While most efforts are directed at inferring drug response phenotype based on genotype, there is very focused and useful phenotypic information to be gained from directly perturbing the patient's living cancer cell with the drug(s) in question. To satisfy this unmet need, we developed the Dynamic BH3 Profiling technique to measure early changes in net pro-apoptotic signaling at the mitochondrion ("priming") induced by chemotherapeutic agents in cancer cells, not requiring prolonged ex vivo culture. We find in cell line and clinical experiments that early drug-induced death signaling measured by Dynamic BH3 Profiling predicts chemotherapy response across many cancer types and many agents, including combinations of chemotherapies. We propose that Dynamic BH3 Profiling can be used as a broadly applicable predictive biomarker to predict cytotoxic response of cancers to chemotherapeutics in vivo.


Assuntos
Morte Celular , Neoplasias/tratamento farmacológico , Transdução de Sinais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Mitocôndrias/metabolismo , Neoplasias/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Medicina de Precisão
3.
Mol Cell ; 82(13): 2443-2457.e7, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35613620

RESUMO

RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.


Assuntos
Neurofibromina 1 , Proteínas Proto-Oncogênicas A-raf , Proteínas Ativadoras de ras GTPase , Receptores ErbB/genética , Receptores ErbB/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Neurofibromina 1/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas A-raf/metabolismo , Transdução de Sinais , Proteínas Ativadoras de ras GTPase/metabolismo
4.
Nature ; 603(7900): 335-342, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236983

RESUMO

RAS family members are the most frequently mutated oncogenes in human cancers. Although KRAS(G12C)-specific inhibitors show clinical activity in patients with cancer1-3, there are no direct inhibitors of NRAS, HRAS or non-G12C KRAS variants. Here we uncover the requirement of the silent KRASG60G mutation for cells to produce a functional KRAS(Q61K). In the absence of this G60G mutation in KRASQ61K, a cryptic splice donor site is formed, promoting alternative splicing and premature protein termination. A G60G silent mutation eliminates the splice donor site, yielding a functional KRAS(Q61K) variant. We detected a concordance of KRASQ61K and a G60G/A59A silent mutation in three independent pan-cancer cohorts. The region around RAS Q61 is enriched in exonic splicing enhancer (ESE) motifs and we designed mutant-specific oligonucleotides to interfere with ESE-mediated splicing, rendering the RAS(Q61) protein non-functional in a mutant-selective manner. The induction of aberrant splicing by antisense oligonucleotides demonstrated therapeutic effects in vitro and in vivo. By studying the splicing necessary for a functional KRAS(Q61K), we uncover a mutant-selective treatment strategy for RASQ61 cancer and expose a mutant-specific vulnerability, which could potentially be exploited for therapy in other genetic contexts.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Mutação Silenciosa , Processamento Alternativo/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Oncogenes/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Sítios de Splice de RNA/genética
5.
Cell ; 150(6): 1107-20, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22980975

RESUMO

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.


Assuntos
Adenocarcinoma/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Genes Neoplásicos , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Exoma , Feminino , Estudo de Associação Genômica Ampla , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Taxa de Mutação
6.
N Engl J Med ; 389(21): 1935-1948, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37937763

RESUMO

BACKGROUND: Osimertinib is a third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that is selective for EGFR-TKI-sensitizing and EGFR T790M resistance mutations. Evidence suggests that the addition of chemotherapy may extend the benefits of EGFR-TKI therapy. METHODS: In this phase 3, international, open-label trial, we randomly assigned in a 1:1 ratio patients with EGFR-mutated (exon 19 deletion or L858R mutation) advanced non-small-cell lung cancer (NSCLC) who had not previously received treatment for advanced disease to receive osimertinib (80 mg once daily) with chemotherapy (pemetrexed [500 mg per square meter of body-surface area] plus either cisplatin [75 mg per square meter] or carboplatin [pharmacologically guided dose]) or to receive osimertinib monotherapy (80 mg once daily). The primary end point was investigator-assessed progression-free survival. Response and safety were also assessed. RESULTS: A total of 557 patients underwent randomization. Investigator-assessed progression-free survival was significantly longer in the osimertinib-chemotherapy group than in the osimertinib group (hazard ratio for disease progression or death, 0.62; 95% confidence interval [CI], 0.49 to 0.79; P<0.001). At 24 months, 57% (95% CI, 50 to 63) of the patients in the osimertinib-chemotherapy group and 41% (95% CI, 35 to 47) of those in the osimertinib group were alive and progression-free. Progression-free survival as assessed according to blinded independent central review was consistent with the primary analysis (hazard ratio, 0.62; 95% CI, 0.48 to 0.80). An objective (complete or partial) response was observed in 83% of the patients in the osimertinib-chemotherapy group and in 76% of those in the osimertinib group; the median response duration was 24.0 months (95% CI, 20.9 to 27.8) and 15.3 months (95% CI, 12.7 to 19.4), respectively. The incidence of grade 3 or higher adverse events from any cause was higher with the combination than with monotherapy - a finding driven by known chemotherapy-related adverse events. The safety profile of osimertinib plus pemetrexed and a platinum-based agent was consistent with the established profiles of the individual agents. CONCLUSIONS: First-line treatment with osimertinib-chemotherapy led to significantly longer progression-free survival than osimertinib monotherapy among patients with EGFR-mutated advanced NSCLC. (Funded by AstraZeneca; FLAURA2 ClinicalTrials.gov number, NCT04035486.).


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Humanos , Compostos de Anilina/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Pemetrexede/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/uso terapêutico
7.
N Engl J Med ; 387(2): 120-131, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35658005

RESUMO

BACKGROUND: Adagrasib, a KRASG12C inhibitor, irreversibly and selectively binds KRASG12C, locking it in its inactive state. Adagrasib showed clinical activity and had an acceptable adverse-event profile in the phase 1-1b part of the KRYSTAL-1 phase 1-2 study. METHODS: In a registrational phase 2 cohort, we evaluated adagrasib (600 mg orally twice daily) in patients with KRASG12C -mutated non-small-cell lung cancer (NSCLC) previously treated with platinum-based chemotherapy and anti-programmed death 1 or programmed death ligand 1 therapy. The primary end point was objective response assessed by blinded independent central review. Secondary end points included the duration of response, progression-free survival, overall survival, and safety. RESULTS: As of October 15, 2021, a total of 116 patients with KRASG12C -mutated NSCLC had been treated (median follow-up, 12.9 months); 98.3% had previously received both chemotherapy and immunotherapy. Of 112 patients with measurable disease at baseline, 48 (42.9%) had a confirmed objective response. The median duration of response was 8.5 months (95% confidence interval [CI], 6.2 to 13.8), and the median progression-free survival was 6.5 months (95% CI, 4.7 to 8.4). As of January 15, 2022 (median follow-up, 15.6 months), the median overall survival was 12.6 months (95% CI, 9.2 to 19.2). Among 33 patients with previously treated, stable central nervous system metastases, the intracranial confirmed objective response rate was 33.3% (95% CI, 18.0 to 51.8). Treatment-related adverse events occurred in 97.4% of the patients - grade 1 or 2 in 52.6% and grade 3 or higher in 44.8% (including two grade 5 events) - and resulted in drug discontinuation in 6.9% of patients. CONCLUSIONS: In patients with previously treated KRASG12C -mutated NSCLC, adagrasib showed clinical efficacy without new safety signals. (Funded by Mirati Therapeutics; ClinicalTrials.gov number, NCT03785249.).


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Acetonitrilas/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/uso terapêutico
8.
N Engl J Med ; 386(3): 241-251, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34534430

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have not been approved for patients with non-small-cell lung cancer (NSCLC). The efficacy and safety of trastuzumab deruxtecan (formerly DS-8201), a HER2 antibody-drug conjugate, in patients with HER2-mutant NSCLC have not been investigated extensively. METHODS: We conducted a multicenter, international, phase 2 study in which trastuzumab deruxtecan (6.4 mg per kilogram of body weight) was administered to patients who had metastatic HER2-mutant NSCLC that was refractory to standard treatment. The primary outcome was objective response as assessed by independent central review. Secondary outcomes included the duration of response, progression-free survival, overall survival, and safety. Biomarkers of HER2 alterations were assessed. RESULTS: A total of 91 patients were enrolled. The median duration of follow-up was 13.1 months (range, 0.7 to 29.1). Centrally confirmed objective response occurred in 55% of the patients (95% confidence interval [CI], 44 to 65). The median duration of response was 9.3 months (95% CI, 5.7 to 14.7). Median progression-free survival was 8.2 months (95% CI, 6.0 to 11.9), and median overall survival was 17.8 months (95% CI, 13.8 to 22.1). The safety profile was generally consistent with those from previous studies; grade 3 or higher drug-related adverse events occurred in 46% of patients, the most common event being neutropenia (in 19%). Adjudicated drug-related interstitial lung disease occurred in 26% of patients and resulted in death in 2 patients. Responses were observed across different HER2 mutation subtypes, as well as in patients with no detectable HER2 expression or HER2 amplification. CONCLUSIONS: Trastuzumab deruxtecan showed durable anticancer activity in patients with previously treated HER2-mutant NSCLC. The safety profile included interstitial lung disease that was fatal in two cases. Observed toxic effects were generally consistent with those in previously reported studies. (Funded by Daiichi Sankyo and AstraZeneca; DESTINY-Lung01 ClinicalTrials.gov number, NCT03505710.).


Assuntos
Camptotecina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imunoconjugados/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Receptor ErbB-2/genética , Trastuzumab/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Camptotecina/efeitos adversos , Camptotecina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Seguimentos , Humanos , Imunoconjugados/efeitos adversos , Doenças Pulmonares Intersticiais/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Pneumonia/induzido quimicamente , Intervalo Livre de Progressão , Trastuzumab/efeitos adversos
9.
Gut ; 73(4): 639-648, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38123998

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN: To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS: Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION: A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos Livres , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores Tumorais , Ácidos Nucleicos Livres/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Pâncreas/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Metilação de DNA
10.
Lancet Oncol ; 25(4): 439-454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547891

RESUMO

BACKGROUND: DESTINY-Lung01 is a multicentre, open-label, phase 2 study evaluating the antitumour activity and safety of trastuzumab deruxtecan, a HER2-directed antibody-drug conjugate, in patients with HER2-overexpressing or HER2 (ERBB2)-mutant unresectable or metastatic non-small-cell lung cancer (NSCLC). The results of the HER2-mutant cohort (cohort 2) have been reported elsewhere. Herein, we report the primary analysis of cohorts 1 and 1A, which aimed to evaluate the activity and safety of trastuzumab deruxtecan 5·4 mg/kg and 6·4 mg/kg in patients with HER2-overexpressing NSCLC. METHODS: Patients aged 18 years or older with unresectable or metastatic (or both unresectable and metastatic) non-squamous NSCLC who had relapsed following or were refractory to standard treatment or for whom no standard treatment was available, with an HER2 immunohistochemistry score of 3+ or 2+ (without known HER2 mutations) and an Eastern Cooperative Oncology Group performance status score of 0 or 1, were enrolled at 20 specialist hospitals in France, Japan, the Netherlands, Spain, and the USA. Patients were assigned to cohorts sequentially, first to cohort 1, to receive trastuzumab deruxtecan 6·4 mg/kg (cohort 1), then to cohort 1A, to receive trastuzumab deruxtecan 5·4 mg/kg, both administered intravenously once every 3 weeks. The primary endpoint was confirmed objective response rate by independent central review and was assessed in the full analysis set, which included all patients who signed an informed consent form and were enrolled in the study. Safety was assessed in all enrolled patients who received at least one dose of trastuzumab deruxtecan. This trial is registered with ClinicalTrials.gov, NCT03505710, and is ongoing (closed to recruitment). FINDINGS: Between Aug 27, 2018, and Jan 28, 2020, 49 patients were enrolled in cohort 1 (median age 63·0 years [IQR 58·0-68·0], 30 [61%] male, 19 [39%] female, and 31 [63%] White), and from June 16 to Dec 9, 2020, 41 patients were enrolled in cohort 1A (median age 62·0 years [IQR 56·0-66·0], 22 [54%] male, 19 [46%] female, and 31 [76%] White). As of data cutoff (Dec 3, 2021), the median treatment duration was 4·1 months (IQR 1·4-7·1) in cohort 1 and 5·5 months (1·4-8·7) in cohort 1A, and median follow-up was 12·0 months (5·4-22·4) in cohort 1 and 10·6 months (4·5-13·5) in cohort 1A. Confirmed objective response rate by independent central review was 26·5% (95% CI 15·0-41·1; 13 of 49, all partial responses) in cohort 1 and 34·1% (20·1-50·6; 14 of 41; two complete responses and 12 partial responses) in cohort 1A. The most common treatment-emergent adverse events of grade 3 or worse were neutropenia (12 [24%] of 49 in cohort 1, none in cohort 1A), pneumonia (six [12%] and two [5%], respectively), fatigue (six [12%] and three [7%], respectively), and disease progression (six [12%] and four [10%], respectively). Drug-related treatment-emergent adverse events of grade 3 or worse occurred in 26 (53%) of 41 patients in cohort 1 and nine (22%) of 49 patients in cohort 1A. Drug-related serious adverse events were reported in ten (20%) patients and three (7%) patients, respectively. Deaths due to treatment-emergent adverse events occurred in ten (20%) patients in cohort 1 (disease progression in six (12%) patients and bronchospasm, hydrocephalus, respiratory failure, and pneumonitis in one [2%] patient each), and in seven (17%) patients in cohort 1A (due to disease progression in four (10%) patients and dyspnoea, malignant neoplasm, and sepsis in one (2%) patient each). One death due to a treatment-emergent adverse event was determined to be due to study treatment by the investigator, which was in cohort 1 (pneumonitis). Independent adjudication of interstitial lung disease or pneumonitis found that drug-related interstitial lung disease or pneumonitis occurred in ten (20%) patients in cohort 1 (two [4%] grade 1, five [10%] grade 2, and three [6%] grade 5) and two (5%) patients in cohort 1A (one [2%] grade 2 and one [2%] grade 5). An additional patient in cohort 1A had grade 4 pneumonitis after the data cutoff, which was subsequently adjudicated as drug-related grade 5 interstitial lung disease or pneumonitis. INTERPRETATION: Given the low antitumour activity of existing treatment options in this patient population, trastuzumab deruxtecan might have the potential to fill a large unmet need in HER2-overexpressing NSCLC. Our findings support further investigation of trastuzumab deruxtecan in patients with HER2-overexpressing NSCLC. FUNDING: Daiichi Sankyo and AstraZeneca.


Assuntos
Camptotecina , Carcinoma Pulmonar de Células não Pequenas , Imunoconjugados , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Pneumonia , Trastuzumab , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Camptotecina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Progressão da Doença , Imunoconjugados/efeitos adversos , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Pneumonia/induzido quimicamente , Receptor ErbB-2/genética , Receptor ErbB-2/análise , Trastuzumab/efeitos adversos , Trastuzumab/uso terapêutico
11.
Mol Pharmacol ; 105(2): 97-103, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164587

RESUMO

Lung cancer is commonly caused by activating mutations in the epidermal growth factor receptor (EGFR). Allosteric kinase inhibitors are unaffected by common ATP-site resistance mutations and represent a promising therapeutic strategy for targeting drug-resistant EGFR variants. However, allosteric inhibitors are antagonized by kinase dimerization, and understanding this phenomenon has been limited to cellular experiments. To facilitate the study of allosteric inhibitor pharmacology, we designed and purified a constitutive EGFR kinase dimer harboring the clinically relevant L858R/T790M mutations. Kinetic characterization revealed that the EGFR kinase dimer is more active than monomeric EGFR(L858R/T790M) kinase and has the same Km,ATP Biochemical profiling of a large panel of ATP-competitive and allosteric EGFR inhibitors showed that allosteric inhibitor potency decreased by >500-fold in the kinase dimer compared with monomer, yielding IC50 values that correlate well with Ba/F3 cellular potencies. Thus, this readily purifiable constitutive asymmetric EGFR kinase dimer represents an attractive tool for biochemical evaluation of EGFR inhibitor pharmacology, in particular for allosteric inhibitors. SIGNIFICANCE STATEMENT: Drugs targeting epidermal growth factor receptor (EGFR) kinase are commonly used to treat lung cancers but are affected by receptor dimerization. Here, we describe a locked kinase dimer that can be used to study EGFR inhibitor pharmacology.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Humanos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Trifosfato de Adenosina , Resistencia a Medicamentos Antineoplásicos
12.
Oncologist ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761385

RESUMO

BACKGROUND: The role of tyrosine kinase inhibitors (TKIs) in early-stage and metastatic oncogene-driven non-small cell lung cancer (NSCLC) is established, but it remains unknown how best to integrate TKIs with concurrent chemoradiotherapy (cCRT) in locally advanced disease. The phase 2 ASCENT trial assessed the efficacy and safety of afatinib and cCRT with or without surgery in locally advanced epidermal growth factor receptor (EGFR)-mutant NSCLC. PATIENTS AND METHODS: Adults ≥18 years with histologically confirmed stage III (AJCC 7th edition) NSCLC with activating EGFR mutations were enrolled at Mass General and Dana-Farber/Brigham Cancer Centers, Boston, Massachusetts. Patients received induction afatinib 40 mg daily for 2 months, then cisplatin 75 mg/m2 and pemetrexed 500 mg/m2 IV every 3 weeks during RT (definitive or neoadjuvant dosing). Patients with resectable disease underwent surgery. All patients were offered consolidation afatinib for 2 years. The primary endpoint was the objective response rate (ORR) to induction TKI. Secondary endpoints were safety, conversion to operability, progression-free survival (PFS), and overall survival (OS). Analyses were performed on the intention-to-treat population. RESULTS: Nineteen patients (median age 56 years; 74% female) were enrolled. ORR to induction afatinib was 63%. Seventeen patients received cCRT; 2/9 previously unresectable became resectable. Ten underwent surgery; 6 had a major or complete pathological response. Thirteen received consolidation afatinib. With a median follow-up of 5.0 years, median PFS and OS were 2.6 (95% CI, 1.4-3.1) and 5.8 years (2.9-NR), respectively. Sixteen recurred or died; 6 recurrences were isolated to CNS. The median time to progression after stopping consolidation TKI was 2.9 months (95% CI, 1.1-7.2). Four developed grade 2 pneumonitis. There were no treatment-related deaths. CONCLUSION: We explored the efficacy of combining TKI with cCRT in oncogene-driven NSCLC. Induction TKI did not compromise subsequent receipt of multimodality therapy. PFS was promising, but the prevalence of CNS-only recurrences and rapid progression after TKI discontinuation speak to unmet needs in measuring and eradicating micrometastatic disease.

13.
N Engl J Med ; 384(25): 2382-2393, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34161704

RESUMO

BACKGROUND: Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRASG12C). The mechanisms of acquired resistance to these therapies are currently unknown. METHODS: Among patients with KRASG12C -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRASG12C inhibitors. RESULTS: A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired KRAS alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the KRASG12C allele. Acquired bypass mechanisms of resistance included MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN. In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of KRAS mutations that confer resistance to KRASG12C inhibitors. CONCLUSIONS: Diverse genomic and histologic mechanisms impart resistance to covalent KRASG12C inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.).


Assuntos
Acetonitrilas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/uso terapêutico , Neoplasias do Apêndice/tratamento farmacológico , Neoplasias do Apêndice/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Colorretais/genética , Humanos , Neoplasias Pulmonares/genética , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/ultraestrutura , Piridinas/uso terapêutico
14.
Future Oncol ; 20(15): 969-980, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38095056

RESUMO

After disease progression on EGFR tyrosine kinase inhibitor (TKI) therapy, patients with EGFR-mutated NSCLC who are then treated with platinum-based chemotherapy (PBC) obtain only limited clinical benefit with transient responses. Therapies with greater efficacy and tolerable safety profiles are needed in this setting. The receptor tyrosine kinase HER3 is widely expressed in NSCLC, and increased expression is associated with poor treatment outcomes. In the U31402-A-U102 phase I trial, HER3-DXd showed promising antitumor activity with manageable safety in heavily pre-treated patients with EGFR-mutated NSCLC across a range of tumor HER3 expression levels and EGFR TKI resistance mechanisms. HERTHENA-Lung02 is the first phase III trial to evaluate the safety and efficacy of HER3-DXd versus PBC in patients with progression on a third-generation EGFR TKI. Clinical Trial Registration: NCT05338970 (clinicaltrials.gov); 2021-005879-40 (EudraCT Number).


In some patients with non-small-cell lung cancer, changes (or mutations) in the DNA sequence can alter a protein called EGFR and allow tumors to grow and survive. Drugs called EGFR tyrosine kinase inhibitors (EGFR TKIs for short) are used to treat these tumors by interfering with the abnormal EGFR protein. Treatment with these drugs can work well at first, but some tumors never respond, and for tumors that do respond, the cancer eventually becomes resistant to the EGFR TKI and the drug stops working. Platinum-based chemotherapy is often prescribed after an EGFR TKI stops working; however, platinum-based chemotherapy can provide only temporary control of the tumor growth. Most patients with non-small-cell lung cancer have a protein called HER3 on the surface of their tumor cells. A new drug candidate called patritumab deruxtecan (HER3-DXd) finds tumor cells and attaches to the HER3 protein on their surface. HER3-DXd then moves inside the cancer cells, where a novel antitumor payload is released and kills the tumor cells. This article describes the phase III clinical trial HERTHENA-Lung02 (NCT05338970) that compares the benefit of HER3-DXd to platinum-based chemotherapy for patients who have non-small-cell lung cancer with the abnormal EGFR protein and whose disease stopped responding or never responded to EGFR TKI therapy.


Assuntos
Anticorpos Monoclonais Humanizados , Camptotecina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camptotecina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ensaios Clínicos Fase III como Assunto , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/efeitos adversos
15.
Future Oncol ; 19(19): 1319-1329, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37212796

RESUMO

Limited treatment options exist for EGFR-mutated NSCLC that has progressed after EGFR TKI and platinum-based chemotherapy. HER3 is highly expressed in EGFR-mutated NSCLC, and its expression is associated with poor prognosis in some patients. Patritumab deruxtecan (HER3-DXd) is an investigational, potential first-in-class, HER3-directed antibody-drug conjugate consisting of a HER3 antibody attached to a topoisomerase I inhibitor payload via a tetrapeptide-based cleavable linker. In an ongoing phase I study, HER3-DXd demonstrated promising antitumor activity and a tolerable safety profile in patients with EGFR-mutated NSCLC, with or without identified EGFR TKI resistance mechanisms, providing proof of concept of HER3-DXd. HERTHENA-Lung01 is a global, registrational, phase II trial further evaluating HER3-DXd in previously treated advanced EGFR-mutated NSCLC. Clinical Trial Registration: NCT04619004 (ClinicalTrials.gov); 2020-000730-17 (EudraCT).


This article describes a clinical trial of a new drug to treat non-small-cell lung cancer. About a third of patients with non-small-cell lung cancer have tumors with changes (mutations) in a gene called EGFR, which cause tumors to grow. These patients are treated with EGFR inhibitors and chemotherapy, both of which can stop the tumor from growing for a period of time. When these treatments stop working, new and effective treatments are needed. Most non-small-cell lung cancer tumors have a protein called HER3 on the surface of their cells. Patritumab deruxtecan (HER3-DXd) is a new drug candidate that uses HER3 to get chemotherapy inside tumor cells. In an earlier clinical trial for patients with lung cancer whose disease had grown after multiple treatments, HER3-DXd often shrank tumors or stopped them from growing. The side effects of HER3-DXd were tolerable. The clinical trial described in this publication, HERTHENA-Lung01 (NCT04619004), is testing HER3-DXd in a larger group of patients with non-small-cell lung cancer that has activating mutations in the EGFR gene and for whom previous treatments have stopped working. The results of this study will help doctors and regulators decide if HER3-DXd should be approved and used for patients with non-small-cell lung cancer with EGFR mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/genética , Receptor ErbB-3/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Mutação , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase I como Assunto
17.
Bioorg Med Chem Lett ; 68: 128718, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35378251

RESUMO

The C797S mutation confers resistance to covalent EGFR inhibitors used in the treatment of lung tumors with the activating L858R mutation. Isoindolinones such as JBJ-4-125-02 bind in an allosteric pocket and are active against this mutation, with high selectivity over wild-type EGFR. The most potent examples we developed from that series have a potential chemical instability risk from the combination of the amide and phenol groups. We explored a scaffold hopping approach to identify new series of allosteric EGFR inhibitors that retained good potency in the absence of the phenol group. The 5-F quinazolinone 34 demonstrated tumor regression in an H1975 efficacy model upon once daily oral dosing at 25 mg/kg.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Mutação , Fenóis , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinonas/farmacologia , Quinazolinonas/uso terapêutico
18.
Nature ; 534(7605): 129-32, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251290

RESUMO

The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.


Assuntos
Antineoplásicos/farmacologia , Benzenoacetamidas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Proteínas Mutantes/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacologia , Modelos Animais de Doenças , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
19.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809660

RESUMO

Non-small-cell lung cancer (NSCLC) with Kirsten rat sarcoma (KRAS) mutations has notoriously challenged oncologists and researchers for three notable reasons: (1) the historical assumption that KRAS is "undruggable", (2) the disease heterogeneity and (3) the shaping of the tumor microenvironment by KRAS downstream effector functions. Better insights into KRAS structural biochemistry allowed researchers to develop direct KRAS(G12C) inhibitors, which have shown early signs of clinical activity in NSCLC patients and have recently led to an FDA breakthrough designation for AMG-510. Following the approval of immune checkpoint inhibitors for PDL1-positive NSCLC, this could fuel yet another major paradigm shift in the treatment of advanced lung cancer. Here, we review advances in our understanding of the biology of direct KRAS inhibition and project future opportunities and challenges of dual KRAS and immune checkpoint inhibition. This strategy is supported by preclinical models which show that KRAS(G12C) inhibitors can turn some immunologically "cold" tumors into "hot" ones and therefore could benefit patients whose tumors harbor subtype-defining STK11/LKB1 co-mutations. Forty years after the discovery of KRAS as a transforming oncogene, we are on the verge of approval of the first KRAS-targeted drug combinations, thus therapeutically unifying Paul Ehrlich's century-old "magic bullet" vision with Rudolf Virchow's cancer inflammation theory.


Assuntos
Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias Pulmonares/terapia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Microambiente Tumoral
20.
J Biol Chem ; 294(24): 9377-9389, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30952700

RESUMO

Cancer tissues harbor thousands of mutations, and a given oncogene may be mutated at hundreds of sites, yet only a few of these mutations have been functionally tested. Here, we describe an unbiased platform for the functional characterization of thousands of variants of a single receptor tyrosine kinase (RTK) gene in a single assay. Our in vitroscreen for activating mutations (iSCREAM) platform enabled rapid analysis of mutations conferring gain-of-function RTK activity promoting clonal growth. The screening strategy included a somatic model of cancer evolution and utilized a library of 7,216 randomly mutated epidermal growth factor receptor (EGFR) single-nucleotide variants that were tested in murine lymphoid Ba/F3 cells. These cells depend on exogenous interleukin-3 (IL-3) for growth, but this dependence can be compensated by ectopic EGFR overexpression, enabling selection for gain-of-function EGFR mutants. Analysis of the enriched mutants revealed EGFR A702V, a novel activating variant that structurally stabilized the EGFR kinase dimer interface and conferred sensitivity to kinase inhibition by afatinib. As proof of concept for our approach, we recapitulated clinical observations and identified the EGFR L858R as the major enriched EGFR variant. Altogether, iSCREAM enabled robust enrichment of 21 variants from a total of 7,216 EGFR mutations. These findings indicate the power of this screening platform for unbiased identification of activating RTK variants that are enriched under selection pressure in a model of cancer heterogeneity and evolution.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Animais , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Biblioteca Gênica , Humanos , Técnicas In Vitro , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA