Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7947): 239-243, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755175

RESUMO

Planetary rings are observed not only around giant planets1, but also around small bodies such as the Centaur Chariklo2 and the dwarf planet Haumea3. Up to now, all known dense rings were located close enough to their parent bodies, being inside the Roche limit, where tidal forces prevent material with reasonable densities from aggregating into a satellite. Here we report observations of an inhomogeneous ring around the trans-Neptunian body (50000) Quaoar. This trans-Neptunian object has an estimated radius4 of 555 km and possesses a roughly 80-km satellite5 (Weywot) that orbits at 24 Quaoar radii6,7. The detected ring orbits at 7.4 radii from the central body, which is well outside Quaoar's classical Roche limit, thus indicating that this limit does not always determine where ring material can survive. Our local collisional simulations show that elastic collisions, based on laboratory experiments8, can maintain a ring far away from the body. Moreover, Quaoar's ring orbits close to the 1/3 spin-orbit resonance9 with Quaoar, a property shared by Chariklo's2,10,11 and Haumea's3 rings, suggesting that this resonance plays a key role in ring confinement for small bodies.

2.
Nature ; 593(7859): 372-374, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34012081

RESUMO

In comets, iron and nickel are found in refractory dust particles or in metallic and sulfide grains1. So far, no iron- or nickel-bearing molecules have been observed in the gaseous coma of comets2. Iron and a few other heavy atoms, such as copper and cobalt, have been observed only in two exceptional objects: the Great Comet of 18823 and, almost a century later, C/1965 S1 (Ikeya-Seki)4-9. These sungrazing comets approached the Sun so closely that refractory materials sublimated, and their relative abundance of nickel to iron was similar to that of the Sun and meteorites7. More recently, the presence of iron vapour was inferred from the properties of a faint tail in comet C/2006 P1 (McNaught) at perihelion10, but neither iron nor nickel was reported in the gaseous coma of comet 67P/Churyumov-Gerasimenko by the in situ Rosetta mission11. Here we report that neutral Fe I and Ni I emission lines are ubiquitous in cometary atmospheres, even far from the Sun, as revealed by high-resolution ultraviolet-optical spectra of a large sample of comets of various compositions and dynamical origins. The abundances of both species appear to be of the same order of magnitude, contrasting the typical Solar System abundance ratio.

4.
Nature ; 508(7494): 72-5, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24670644

RESUMO

Hitherto, rings have been found exclusively around the four giant planets in the Solar System. Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur--that is, one of a class of small objects orbiting primarily between Jupiter and Neptune--with an equivalent radius of 124 ± 9 kilometres (ref. 2). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.

5.
Nature ; 491(7425): 566-9, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23172214

RESUMO

Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies. Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos. Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto, and is currently at a distance to the Sun intermediate between the two. Although Makemake's size (1,420 ± 60 km) and albedo are roughly known, there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere. Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 ± 9 km (1σ) and 1,502 ± 45 km, implying a V-band geometric albedo p(V) = 0.77 ± 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4-12 nanobar (1σ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 ± 0.3 g cm(-3) is inferred from the data.

6.
Nature ; 478(7370): 493-6, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22031441

RESUMO

The dwarf planet Eris is a trans-Neptunian object with an orbital eccentricity of 0.44, an inclination of 44 degrees and a surface composition very similar to that of Pluto. It resides at present at 95.7 astronomical units (1 AU is the Earth-Sun distance) from Earth, near its aphelion and more than three times farther than Pluto. Owing to this great distance, measuring its size or detecting a putative atmosphere is difficult. Here we report the observation of a multi-chord stellar occultation by Eris on 6 November 2010 UT. The event is consistent with a spherical shape for Eris, with radius 1,163 ± 6 kilometres, density 2.52 ± 0.05 grams per cm(3) and a high visible geometric albedo, Pv = 0.96(+0.09)(-0.04). No nitrogen, argon or methane atmospheres are detected with surface pressure larger than ∼1 nanobar, about 10,000 times more tenuous than Pluto's present atmosphere. As Pluto's radius is estimated to be between 1,150 and 1,200 kilometres, Eris appears as a Pluto twin, with a bright surface possibly caused by a collapsed atmosphere, owing to its cold environment. We anticipate that this atmosphere may periodically sublimate as Eris approaches its perihelion, at 37.8 astronomical units from the Sun.

7.
Philos Trans A Math Phys Eng Sci ; 375(2097)2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28554971

RESUMO

We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko from before Rosetta's arrival until nearly the end of the mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft and a way to directly compare 67P with other comets. The observations revealed 67P to be a relatively 'well-behaved' comet, typical of Jupiter family comets and with activity patterns that repeat from orbit to orbit. Comparison between this large collection of telescopic observations and the in situ results from Rosetta will allow us to better understand comet coma chemistry and structure. This work is just beginning as the mission ends-in this paper, we present a summary of the ground-based observations and early results, and point to many questions that will be addressed in future studies.This article is part of the themed issue 'Cometary science after Rosetta'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA