Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 16(11): e0259018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34847176

RESUMO

A variety of mitigation strategies have been employed against the Covid-19 pandemic. Social distancing is still one of the main methods to reduce spread, but it entails a high toll on personal freedom and economic life. Alternative mitigation strategies that do not come with the same problems but are effective at preventing disease spread are therefore needed. Repetitive mass-testing using PCR assays for viral RNA has been suggested, but as a stand-alone strategy this would be prohibitively resource intensive. Here, we suggest a strategy that aims at targeting the limited resources available for viral RNA testing to subgroups that are more likely than the average population to yield a positive test result. Importantly, these pre-selected subgroups include symptom-free people. By testing everyone in these subgroups, in addition to symptomatic cases, large fractions of pre- and asymptomatic people can be identified, which is only possible by testing-based mitigation. We call this strategy smart testing (ST). In principle, pre-selected subgroups can be found in different ways, but for the purpose of this study we analyze a pre-selection procedure based on cheap and fast virus antigen tests. We quantify the potential reduction of the epidemic reproduction number by such a two-stage ST strategy. In addition to a scenario where such a strategy is available to the whole population, we analyze local applications, e.g. in a country, company, or school, where the tested subgroups are also in exchange with the untested population. Our results suggest that a two-stage ST strategy can be effective to curb pandemic spread, at costs that are clearly outweighed by the economic benefit. It is technically and logistically feasible to employ such a strategy, and our model predicts that it is even effective when applied only within local groups. We therefore recommend adding two-stage ST to the portfolio of available mitigation strategies, which allow easing social distancing measures without compromising public health.


Assuntos
Teste para COVID-19 , COVID-19/diagnóstico , COVID-19/prevenção & controle , RNA Viral/análise , Número Básico de Reprodução , COVID-19/virologia , Teste Sorológico para COVID-19 , Modelos Epidemiológicos , Humanos , Programas de Rastreamento , Terminologia como Assunto
2.
J Biomech ; 110: 109948, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32827784

RESUMO

In this paper the dynamics of human running on flat terrain and the required mechanical power output with its dependency on various parameters is investigated. Knowing the required mechanical power output is of relevance due to its relationship with the metabolic power. For example, a better understanding of the dependencies of required mechanical power output on weight, running and wind speed, step frequency, ground contact time etc. is very valuable for the assessment, analysis and optimization of running performance. Therefore, a mathematical model based on very few assumptions is devised. The purpose of the proposed model is to relate running speed and required mechanical power output as an algebraic function of the runner's mass, height, step rate, ground contact time and wind speed. This is relevant in order to better understand the mechanical energy cost of locomotion, and how much it depends on which parameters. The first of the main energy dissipation mechanisms is due to vertical oscillation, i.e., during each step some of the potential energy difference gets transformed into heat. The second mechanism is due to the anterior ground reaction force during the first part of stance and the third is due to aerodynamic drag. With the approximations of constant running speed and a sinusoidal vertical ground reaction force profile one obtains closed algebraic expressions for the center of mass trajectory and the required mechanical power output. Comparisons of model predictions and reported performance data suggest that approximately a quarter of the ground impact energy is stored during the first part of ground contact and then released during the remaining stance phase. Further, one can conclude from the model that less mechanical power output is required when running with higher step rates and a higher center of mass. Non intuitive is the result that a shorter ground contact time is beneficial for fast runs, while the opposite holds for slow runs. An important advantage of the devised model compared to others is that it leads to closed algebraic expressions for the center of mass trajectory and mechanical power output, which are functions of measurable quantities, i.e., of step rate, ground contact time, running speed, runner's mass, center of mass height, aerodynamic drag at some given speed, wind speed and heart rate. Moreover, the model relies on very few assumptions, which have been verified, and the only tuning parameter is the ratio of recovered elastic energy.


Assuntos
Corrida , Fenômenos Biomecânicos , Humanos , Locomoção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA