Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586884

RESUMO

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Assuntos
Farmacologia Clínica , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Transporte , Ligantes
2.
Cell Mol Life Sci ; 81(1): 65, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281222

RESUMO

Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time at which GLIS3 target genes, such as Slc5a5 (Nis), become expressed. This, together with observations showing that ubiquitous Glis3KO mice do not display major changes in prenatal thyroid gland morphology, indicated that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of GLIS3 in postnatal thyroid suggested a link between GLIS3 protein expression and blood TSH levels. This was supported by data showing that treatment with TSH, cAMP, or adenylyl cyclase activators or expression of constitutively active PKA enhanced GLIS3 protein stability and transcriptional activity, indicating that GLIS3 activity is regulated at least in part by TSH/TSHR-mediated activation of PKA. The TSH-dependent increase in GLIS3 transcriptional activity would be critical for the induction of GLIS3 target gene expression, including several thyroid hormone (TH) biosynthetic genes, in thyroid follicular cells of mice fed a low iodine diet (LID) when blood TSH levels are highly elevated. Like TH biosynthetic genes, the expression of cell cycle genes is suppressed in ubiquitous Glis3KO mice fed a LID; however, in thyroid-specific Glis3 knockout mice, the expression of cell cycle genes was not repressed, in contrast to TH biosynthetic genes. This indicated that the inhibition of cell cycle genes in ubiquitous Glis3KO mice is dependent on changes in gene expression in GLIS3 target tissues other than the thyroid.


Assuntos
Glândula Tireoide , Fatores de Transcrição , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Proteínas Repressoras/genética , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Tireotropina/genética , Tireotropina/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
3.
Annu Rev Pharmacol Toxicol ; 60: 371-390, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31386594

RESUMO

Retinoic acid-related orphan receptor γt (RORγt) functions as a ligand-dependent transcription factor that regulates multiple proinflammatory genes and plays a critical role in several inflammatory and autoimmune diseases. Various endogenous and synthetic RORγ (inverse) agonists have been identified that regulate RORγ transcriptional activity, including many cholesterol intermediates and oxysterols. Changes in cholesterol biosynthesis and metabolism can therefore have a significant impact on the generation of oxysterol RORγ ligands and, consequently, can control RORγt activity and inflammation. These observations contribute to a growing literature that connects cholesterol metabolism to the regulation of immune responses and autoimmune disease. Loss of RORγ function in knockout mice and in mice treated with RORγ inverse agonists results in reduced production of proinflammatory cytokines, such as IL-17A/F, and increased resistance to autoimmune disease in several experimental rodent models. Thus, RORγt inverse agonists might provide an attractive therapeutic approach to treat a variety of autoimmune diseases.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Inflamação/tratamento farmacológico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Animais , Doenças Autoimunes/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Agonismo Inverso de Drogas , Humanos , Inflamação/imunologia , Ligantes , Camundongos , Camundongos Knockout
4.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30523147

RESUMO

Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.


Assuntos
Antígeno AC133/metabolismo , Cílios/metabolismo , Incisivo/citologia , Antígeno AC133/genética , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Incisivo/metabolismo , Camundongos , Modelos Biológicos , Mutagênese Sítio-Dirigida , Transporte Proteico , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
5.
FASEB J ; 36(8): e22451, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35838947

RESUMO

CYP11A1 and CYP27A1 hydroxylate tachysterol3 , a photoproduct of previtamin D3 , producing 20S-hydroxytachysterol3 [20S(OH)T3 ] and 25(OH)T3 , respectively. Both metabolites were detected in the human epidermis and serum. Tachysterol3 was also detected in human serum at a concentration of 7.3 ± 2.5 ng/ml. 20S(OH)T3 and 25(OH)T3 inhibited the proliferation of epidermal keratinocytes and dermal fibroblasts and stimulated the expression of differentiation and anti-oxidative genes in keratinocytes in a similar manner to 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ]. They acted on the vitamin D receptor (VDR) as demonstrated by image flow cytometry and the translocation of VDR coupled GFP from the cytoplasm to the nucleus of melanoma cells, as well as by the stimulation of CYP24A1 expression. Functional studies using a human aryl hydrocarbon receptor (AhR) reporter assay system revealed marked activation of AhR by 20S(OH)T3 , a smaller effect by 25(OH)T3 , and a minimal effect for their precursor, tachysterol3 . Tachysterol3 hydroxyderivatives showed high-affinity binding to the ligan-binding domain (LBD) of the liver X receptor (LXR) α and ß, and the peroxisome proliferator-activated receptor γ (PPARγ) in LanthaScreen TR-FRET coactivator assays. Molecular docking using crystal structures of the LBDs of VDR, AhR, LXRs, and PPARγ revealed high docking scores for 20S(OH)T3 and 25(OH)T3 , comparable to their natural ligands. The scores for the non-genomic-binding site of the VDR were very low indicating a lack of interaction with tachysterol3 ligands. Our identification of endogenous production of 20S(OH)T3 and 25(OH)T3 that are biologically active and interact with VDR, AhR, LXRs, and PPARγ, provides a new understanding of the biological function of tachysterol3 .


Assuntos
Colecalciferol , PPAR gama , Receptores de Calcitriol , Ativação Metabólica , Colecalciferol/análogos & derivados , Colecalciferol/metabolismo , Colecalciferol/farmacocinética , Humanos , Receptores X do Fígado/metabolismo , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Calcitriol/metabolismo
6.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895177

RESUMO

Melatonin is widely present in Nature. It has pleiotropic activities, in part mediated by interactions with high-affinity G-protein-coupled melatonin type 1 and 2 (MT1 and MT2) receptors or under extreme conditions, e.g., ischemia/reperfusion. In pharmacological concentrations, it is given to counteract the massive damage caused by MT1- and MT2-independent mechanisms. The aryl hydrocarbon receptor (AhR) is a perfect candidate for mediating the latter effects because melatonin has structural similarity to its natural ligands, including tryptophan metabolites and indolic compounds. Using a cell-based Human AhR Reporter Assay System, we demonstrated that melatonin and its indolic and kynuric metabolites act as agonists on the AhR with EC50's between 10-4 and 10-6 M. This was further validated via the stimulation of the transcriptional activation of the CYP1A1 promoter. Furthermore, melatonin and its metabolites stimulated AhR translocation from the cytoplasm to the nucleus in human keratinocytes, as demonstrated by ImageStream II cytometry and Western blot (WB) analyses of cytoplasmic and nuclear fractions of human keratinocytes. These functional analyses are supported by in silico analyses. We also investigated the peroxisome proliferator-activated receptor (PPAR)γ as a potential target for melatonin and metabolites bioregulation. The binding studies using a TR-TFRET kit to assay the interaction of the ligand with the ligand-binding domain (LBD) of the PPARγ showed agonistic activities of melatonin, 6-hydroxymelatonin and N-acetyl-N-formyl-5-methoxykynuramine with EC50's in the 10-4 M range showing significantly lower affinities that those of rosiglitazone, e.g., a 10-8 M range. These interactions were substantiated by stimulation of the luciferase activity of the construct containing PPARE by melatonin and its metabolites at 10-4 M. As confirmed by the functional assays, binding mode predictions using a homology model of the AhR and a crystal structure of the PPARγ suggest that melatonin and its metabolites, including 6-hydroxymelatonin, 5-methoxytryptamine and N-acetyl-N-formyl-5-methoxykynuramine, are excellent candidates to act on the AhR and PPARγ with docking scores comparable to their corresponding natural ligands. Melatonin and its metabolites were modeled into the same ligand-binding pockets (LBDs) as their natural ligands. Thus, functional assays supported by molecular modeling have shown that melatonin and its indolic and kynuric metabolites can act as agonists on the AhR and they can interact with the PPARγ at high concentrations. This provides a mechanistic explanation for previously reported cytoprotective actions of melatonin and its metabolites that require high local concentrations of the ligands to reduce cellular damage under elevated oxidative stress conditions. It also identifies these compounds as therapeutic agents to be used at pharmacological doses in the prevention or therapy of skin diseases.


Assuntos
Melatonina , Receptores de Hidrocarboneto Arílico , Humanos , Queratinócitos/metabolismo , Ligantes , Melatonina/metabolismo , PPAR gama/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
7.
Bioorg Chem ; 121: 105660, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35168121

RESUMO

New and more efficient routes of chemical synthesis of vitamin D3 (D3) hydroxy (OH) metabolites, including 20S(OH)D3, 20S,23S(OH)2D3 and 20S,25(OH)2D3, that are endogenously produced in the human body by CYP11A1, and of 20S,23R(OH)2D3 were established. The biological evaluation showed that these compounds exhibited similar properties to each other regarding inhibition of cell proliferation and induction of cell differentiation but with subtle and quantitative differences. They showed both overlapping and differential effects on T-cell immune activity. They also showed similar interactions with nuclear receptors with all secosteroids activating vitamin D, liver X, retinoic acid orphan and aryl hydrocarbon receptors in functional assays and also as indicated by molecular modeling. They functioned as substrates for CYP27B1 with enzymatic activity being the highest towards 20S,25(OH)2D3 and the lowest towards 20S(OH)D3. In conclusion, defining new routes for large scale synthesis of endogenously produced D3-hydroxy derivatives by pathways initiated by CYP11A1 opens an exciting era to analyze their common and differential activities in vivo, particularly on the immune system and inflammatory diseases.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Vitaminas , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Humanos , Receptores de Calcitriol/metabolismo , Receptores Citoplasmáticos e Nucleares , Vitamina D/metabolismo
8.
Am J Pathol ; 190(1): 176-189, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676329

RESUMO

Nephronophthisis (NPHP), the leading genetic cause of end-stage renal failure in children and young adults, is a group of autosomal recessive diseases characterized by kidney-cyst degeneration and fibrosis for which no therapy is currently available. To date, mutations in >25 genes have been identified as causes of this disease that, in several cases, result in chronic DNA damage in kidney tubular cells. Among such mutations, those in the transcription factor-encoding GLIS2 cause NPHP type 7. Loss of function of mouse Glis2 causes senescence of kidney tubular cells. Senescent cells secrete proinflammatory molecules that induce progressive organ damage through several pathways, among which NF-κB signaling is prevalent. Herein, we show that the NF-κB signaling is active in Glis2 knockout kidney epithelial cells and that genetic inactivation of the toll-like receptor (TLR)/IL-1 receptor or pharmacologic elimination of senescent cells (senolytic therapy) reduces tubule damage, fibrosis, and apoptosis in the Glis2 mouse model of NPHP. Notably, in Glis2, Tlr2 double knockouts, senescence was also reduced and proliferation was increased, suggesting that loss of TLR2 activity improves the regenerative potential of tubular cells in Glis2 knockout kidneys. Our results further suggest that a combination of TLR/IL-1 receptor inhibition and senolytic therapy may delay the progression of kidney disease in NPHP type 7 and other forms of this disease.


Assuntos
Senescência Celular/imunologia , Modelos Animais de Doenças , Imunidade Inata/imunologia , Doenças Renais Císticas/patologia , Túbulos Renais/patologia , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Animais , Apoptose , Doenças Renais Císticas/imunologia , Doenças Renais Císticas/metabolismo , Túbulos Renais/imunologia , Túbulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/fisiologia , Receptor 2 Toll-Like/fisiologia
9.
Immunity ; 36(1): 23-31, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22244845

RESUMO

T helper 17 (Th17) cells specifically transcribe the Il17 and Il17f genes, which are localized in the same chromosome region, but the underlying mechanism is unclear. Here, we report a cis element that we previously named conserved noncoding sequence 2 (CNS2) physically interacted with both Il17 and Il17f gene promoters and was sufficient for regulating their selective transcription in Th17 cells. Targeted deletion of CNS2 resulted in impaired retinoic acid-related orphan receptor gammat (RORγt)-driven IL-17 expression in vitro. CNS2-deficient T cells also produced substantially decreased amounts of IL-17F. These cytokine defects were associated with defective chromatin remodeling in the Il17-Il17f gene locus, possibly because of effects on CNS2-mediated recruitment of histone-modifying enzymes p300 and JmjC domain-containing protein 3 (JMJD3). CNS2-deficient animals were also shown to be resistant to experimental autoimmune encephalomyelitis (EAE). Our results thus suggest that CNS2 is sufficient and necessary for Il17 and optimal Il17f gene transcription in Th17 cells.


Assuntos
Sequência Conservada , Regulação da Expressão Gênica , Interleucina-17/genética , Regiões Promotoras Genéticas , Pequeno RNA não Traduzido , Animais , Encefalomielite Autoimune Experimental/genética , Interleucina-17/metabolismo , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Elementos Reguladores de Transcrição
10.
Genes Immun ; 21(3): 150-168, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32203088

RESUMO

Glucocorticoid synthesis is a complex, multistep process that starts with cholesterol being delivered to the inner membrane of mitochondria by StAR and StAR-related proteins. Here its side chain is cleaved by CYP11A1 producing pregnenolone. Pregnenolone is converted to cortisol by the enzymes 3-ßHSD, CYP17A1, CYP21A2, and CYP11B1. Glucocorticoids play a critical role in the regulation of the immune system and exert their action through the glucocorticoid receptor (GR). Although corticosteroids are primarily produced in the adrenal gland, they can also be produced in a number of extra-adrenal tissue including the immune system, skin, brain, and intestine. Glucocorticoid production is regulated by ACTH, CRH, and cytokines such as IL-1, IL-6, and TNFα. The bioavailability of cortisol is also dependent on its interconversion to cortisone, which is inactive, by 11ßHSD1/2. Local and systemic glucocorticoid biosynthesis can be stimulated by ultraviolet B, explaining its immunosuppressive activity. In this review, we want to emphasize that dysregulation of extra-adrenal glucocorticoid production can play a key role in a variety of autoimmune diseases including multiple sclerosis (MS), lupus erythematosus (LE), rheumatoid arthritis (RA), and skin inflammatory disorders such as psoriasis and atopic dermatitis (AD). Further research on local glucocorticoid production and its bioavailability may open doors into new therapies for autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Glucocorticoides/biossíntese , Glucocorticoides/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Glândulas Suprarrenais/metabolismo , Vias Biossintéticas , Citocinas/metabolismo , Humanos , Hidrocortisona/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Pele/imunologia , Pele/metabolismo , Dermatopatias/imunologia
11.
Stem Cells ; 37(2): 202-215, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30376208

RESUMO

Anterior-posterior (A-P) specification of the neural tube involves initial acquisition of anterior fate followed by the induction of posterior characteristics in the primitive anterior neuroectoderm. Several morphogens have been implicated in the regulation of A-P neural patterning; however, our understanding of the upstream regulators of these morphogens remains incomplete. Here, we show that the Krüppel-like zinc finger transcription factor GLI-Similar 3 (GLIS3) can direct differentiation of human embryonic stem cells (hESCs) into posterior neural progenitor cells in lieu of the default anterior pathway. Transcriptomic analyses reveal that this switch in cell fate is due to rapid activation of Wingless/Integrated (WNT) signaling pathway. Mechanistically, through genome-wide RNA-Seq, ChIP-Seq, and functional analyses, we show that GLIS3 binds to and directly regulates the transcription of several WNT genes, including the strong posteriorizing factor WNT3A, and that inhibition of WNT signaling is sufficient to abrogate GLIS3-induced posterior specification. Our findings suggest a potential role for GLIS3 in the regulation of A-P specification through direct transcriptional activation of WNT genes. Stem Cells 2018 Stem Cells 2019;37:202-215.


Assuntos
Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Neurais/citologia , Proteínas Repressoras/genética , Transativadores/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Neurais/metabolismo , Ativação Transcricional , Via de Sinalização Wnt
12.
Exp Dermatol ; 29(9): 885-890, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32779213

RESUMO

The negative outcomes of COVID-19 diseases respiratory distress (ARDS) and the damage to other organs are secondary to a "cytokine storm" and to the attendant oxidative stress. Active hydroxyl forms of vitamin D are anti-inflammatory, induce antioxidative responses, and stimulate innate immunity against infectious agents. These properties are shared by calcitriol and the CYP11A1-generated non-calcemic hydroxyderivatives. They inhibit the production of pro-inflammatory cytokines, downregulate NF-κΒ, show inverse agonism on RORγ and counteract oxidative stress through the activation of NRF-2. Therefore, a direct delivery of hydroxyderivatives of vitamin D deserves consideration in the treatment of COVID-19 or ARDS of different aetiology. We also recommend treatment of COVID-19 patients with high-dose vitamin D since populations most vulnerable to this disease are likely vitamin D deficient and patients are already under supervision in the clinics. We hypothesize that different routes of delivery (oral and parenteral) will have different impact on the final outcome.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Pandemias , SARS-CoV-2 , Pele/efeitos dos fármacos , Pele/imunologia , Vitamina D/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Antivirais/uso terapêutico , COVID-19/complicações , Síndrome da Liberação de Citocina/complicações , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Modelos Biológicos , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/imunologia , Vitamina D/administração & dosagem , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/imunologia
13.
Adv Exp Med Biol ; 1268: 257-283, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32918223

RESUMO

Nonmelanoma skin cancers including basal and squamous cell carcinomas (SCC and BCC) represent a significant clinical problem due to their relatively high incidence, imposing an economic burden to healthcare systems around the world. It is accepted that ultraviolet radiation (UVR: λ = 290-400 nm) plays a crucial role in the initiation and promotion of BCC and SCC with UVB (λ = 290-320 nm) having a central role in this process. On the other hand, UVB is required for vitamin D3 (D3) production in the skin, which supplies >90% of the body's requirement for this prohormone. Prolonged exposure to UVB can also generate tachysterol and lumisterol. Vitamin D3 itself and its canonical (1,25(OH)2D3) and noncanonical (CYP11A1-intitated) D3 hydroxyderivatives show photoprotective functions in the skin. These include regulation of keratinocyte proliferation and differentiation, induction of anti-oxidative responses, inhibition of DNA damage and induction of DNA repair mechanisms, and anti-inflammatory activities. Studies in animals have demonstrated that D3 hydroxyderivatives can attenuate UVB or chemically induced epidermal cancerogenesis and inhibit growth of SCC and BCC. Genomic and non-genomic mechanisms of action have been suggested. In addition, vitamin D3 itself inhibits hedgehog signaling pathways which have been implicated in many cancers. Silencing of the vitamin D receptor leads to increased propensity to develop UVB or chemically induced epidermal cancers. Other targets for vitamin D compounds include 1,25D3-MARRS, retinoic orphan receptors α and γ, aryl hydrocarbon receptor, and Wnt signaling. Most recently, photoprotective effects of lumisterol hydroxyderivatives have been identified. Clinical trials demonstrated a beneficial role of vitamin D compounds in the treatment of actinic keratosis. In summary, recent advances in vitamin D biology and pharmacology open new exciting opportunities in chemoprevention and treatment of skin cancers.


Assuntos
Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Vitamina D/química , Animais , Progressão da Doença , Humanos , Receptores de Calcitriol/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Raios Ultravioleta/efeitos adversos , Vitamina D/metabolismo , Vitamina D/farmacologia , Vitaminas/química , Vitaminas/metabolismo , Vitaminas/farmacologia
14.
J Lipid Res ; 60(9): 1535-1546, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31273032

RESUMO

Oxysterols previously were considered intermediates of bile acid and steroid hormone biosynthetic pathways. However, recent research has emphasized the roles of oxysterols in essential physiologic processes and in various diseases. Despite these discoveries, the metabolic pathways leading to the different oxysterols are still largely unknown and the biosynthetic origin of several oxysterols remains unidentified. Earlier studies demonstrated that the glucocorticoid metabolizing enzymes, 11ß-hydroxysteroid dehydrogenase (11ß-HSD) types 1 and 2, interconvert 7-ketocholesterol (7kC) and 7ß-hydroxycholesterol (7ßOHC). We examined the role of 11ß-HSDs in the enzymatic control of the intracellular availability of 7ß,27-dihydroxycholesterol (7ß27OHC), a retinoid-related orphan receptor γ (RORγ) ligand. We used microsomal preparations of cells expressing recombinant 11ß-HSD1 and 11ß-HSD2 to assess whether 7ß27OHC and 7-keto,27-hydroxycholesterol (7k27OHC) are substrates of these enzymes. Binding of 7ß27OHC and 7k27OHC to 11ß-HSDs was studied by molecular modeling. To our knowledge, the stereospecific oxoreduction of 7k27OHC to 7ß27OHC by human 11ß-HSD1 and the reverse oxidation reaction of 7ß27OHC to 7k27OHC by human 11ß-HSD2 were demonstrated for the first time. Apparent enzyme affinities of 11ß-HSDs for these novel substrates were equal to or higher than those of the glucocorticoids. This is supported by the fact that 7k27OHC and 7ß27OHC are potent inhibitors of the 11ß-HSD1-dependent oxoreduction of cortisone and the 11ß-HSD2-dependent oxidation of cortisol, respectively. Furthermore, molecular docking calculations explained stereospecific enzyme activities. Finally, using an inducible RORγ reporter system, we showed that 11ß-HSD1 and 11ß-HSD2 controlled RORγ activity. These findings revealed a novel glucocorticoid-independent prereceptor regulation mechanism by 11ß-HSDs that warrants further investigation.


Assuntos
11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Receptores Nucleares Órfãos/metabolismo , Receptores de Mineralocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenases/genética , Linhagem Celular , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Glucocorticoides/metabolismo , Humanos , Cinética , Simulação de Acoplamento Molecular , Oxisteróis/metabolismo , Espectrometria de Massas em Tandem
15.
Am J Physiol Heart Circ Physiol ; 316(1): H186-H200, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387679

RESUMO

The nuclear receptor retinoic acid-related orphan receptor-α (RORα) regulates numerous critical biological processes, including central nervous system development, lymphocyte differentiation, and lipid metabolism. RORα has been recently identified in the heart, but very little is known about its role in cardiac physiology. We sought to determine whether RORα regulates myocardial hypertrophy and cardiomyocyte survival in the context of angiotensin II (ANG II) stimulation. For in vivo characterization of the function of RORα in the context of pathological cardiac hypertrophy and heart failure, we used the "staggerer" (RORαsg/sg) mouse, which harbors a germline mutation encoding a truncated and globally nonfunctional RORα. RORαsg/sg and wild-type littermate mice were infused with ANG II or vehicle for 14 days. For in vitro experiments, we overexpressed or silenced RORα in neonatal rat ventricular myocytes (NRVMs) and human cardiac fibroblasts exposed to ANG II. RORαsg/sg mice developed exaggerated myocardial hypertrophy and contractile dysfunction after ANG II treatment. In vitro gain- and loss-of-function experiments were consistent with the discovery that RORα inhibits ANG II-induced pathological hypertrophy and cardiomyocyte death in vivo. RORα directly repressed IL-6 transcription. Loss of RORα function led to enhanced IL-6 expression, proinflammatory STAT3 activation (phopho-STAT3 Tyr705), and decreased mitochondrial number and function, oxidative stress, hypertrophy, and death of cardiomyocytes upon ANG II exposure. RORα was less abundant in failing compared with nonfailing human heart tissue. In conclusion, RORα protects against ANG II-mediated pathological hypertrophy and heart failure by suppressing the IL-6-STAT3 pathway and enhancing mitochondrial function. NEW & NOTEWORTHY Mice lacking retinoic acid-related orphan receptor-α (RORα) develop exaggerated cardiac hypertrophy after angiotensin II infusion. Loss of RORα leads to enhanced IL-6 expression and NF-κB nuclear translocation. RORα maintains mitochondrial function and reduces oxidative stress after angiotensin II. The abundance of RORα is reduced in failing mouse and human hearts.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Mutação com Perda de Função , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Angiotensina II/toxicidade , Animais , Cardiomegalia/etiologia , Cardiomegalia/genética , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo
16.
Exp Dermatol ; 28(9): 1036-1043, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31287590

RESUMO

We analysed the correlation between the expression of HIF-1α (hypoxia-inducible factor 1 alpha), the nuclear receptors: VDR (vitamin D receptor), RORα (retinoic acid receptor-related orphan receptor alpha), and RORγ and CYP24A1 (cytochrome P450 family 24 subfamily A member 1) and CYP27B1 (cytochrome P450 family 27 subfamily B member 1), enzymes involved in vitamin D metabolism. In primary and metastatic melanomas, VDR negatively correlated with nuclear HIF-1α expression (r = -.2273, P = .0302; r = -.5081, P = .0011). Furthermore, the highest HIF-1α expression was observed in pT3-pT4 VDR-negative melanomas. A comparative analysis of immunostained HIF-1α and CYP27B1 and CYP24A1 showed lack of correlation between these parameters both in primary tumors and melanoma metastases. In contrast, RORα expression correlated positively with nuclear HIF-1α expression in primary and metastatic lesions (r = .2438, P = .0175; r = .3662, P = .0166). Comparable levels of HIF-1α expression pattern was observed in localized and advanced melanomas. RORγ in primary melanomas correlated also positively with nuclear HIF-1α expression (r = .2743, P = .0129). HIF-1α expression was the lowest in localized RORγ-negative melanomas. In addition, HIF-1α expression correlated with RORγ-positive lymphocytes in melanoma metastases. We further found that in metastatic lymph nodes FoxP3 immunostaining correlated positively with HIF-1α and RORγ expression in melanoma cells (r = .3667; P = .0327; r = .4208, P = .0129). In summary, our study indicates that the expression of VDR, RORα and RORγ in melanomas is related to hypoxia and/or HIF1-α activity, which also affects FoxP3 expression in metastatic melanoma. Therefore, the hypoxia can affect tumor biology by changing nuclear receptors expression and molecular pathways regulated by nuclear receptors and immune responses.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Melanoma/metabolismo , Proteínas de Neoplasias/biossíntese , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/biossíntese , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/biossíntese , Receptores de Calcitriol/biossíntese , Neoplasias Cutâneas/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Hipóxia Celular , Núcleo Celular/química , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Linfócitos/química , Linfócitos do Interstício Tumoral/imunologia , Masculino , Melanoma/genética , Melanoma/imunologia , Melanoma/secundário , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores de Calcitriol/genética , Método Simples-Cego , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Linfócitos T Reguladores/imunologia , Vitamina D3 24-Hidroxilase/análise
17.
Cell Mol Life Sci ; 75(19): 3473-3494, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29779043

RESUMO

Krüppel-like zinc finger proteins form one of the largest families of transcription factors. They function as key regulators of embryonic development and a wide range of other physiological processes, and are implicated in a variety of pathologies. GLI-similar 1-3 (GLIS1-3) constitute a subfamily of Krüppel-like zinc finger proteins that act either as activators or repressors of gene transcription. GLIS3 plays a critical role in the regulation of multiple biological processes and is a key regulator of pancreatic ß cell generation and maturation, insulin gene expression, thyroid hormone biosynthesis, spermatogenesis, and the maintenance of normal kidney functions. Loss of GLIS3 function in humans and mice leads to the development of several pathologies, including neonatal diabetes and congenital hypothyroidism, polycystic kidney disease, and infertility. Single nucleotide polymorphisms in GLIS3 genes have been associated with increased risk of several diseases, including type 1 and type 2 diabetes, glaucoma, and neurological disorders. GLIS2 plays a critical role in the kidney and GLIS2 dysfunction leads to nephronophthisis, an end-stage, cystic renal disease. In addition, GLIS1-3 have regulatory functions in several stem/progenitor cell populations. GLIS1 and GLIS3 greatly enhance reprogramming efficiency of somatic cells into induced embryonic stem cells, while GLIS2 inhibits reprogramming. Recent studies have obtained substantial mechanistic insights into several physiological processes regulated by GLIS2 and GLIS3, while a little is still known about the physiological functions of GLIS1. The localization of some GLIS proteins to the primary cilium suggests that their activity may be regulated by a downstream primary cilium-associated signaling pathway. Insights into the upstream GLIS signaling pathway may provide opportunities for the development of new therapeutic strategies for diabetes, hypothyroidism, and other diseases.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Doença/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Fenômenos Fisiológicos/genética , Fatores de Transcrição/fisiologia , Animais , Humanos , Camundongos , Proteínas Repressoras , Transdução de Sinais/genética , Transativadores
18.
Immunity ; 30(4): 576-87, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19362022

RESUMO

T helper (Th) 17 cells have been recently discovered in both mouse and human. Here we show that interleukin-1 (IL-1) signaling on T cells is critically required for the early programming of Th17 cell lineage and Th17 cell-mediated autoimmunity. IL-1 receptor1 expression in T cells, which was induced by IL-6, was necessary for the induction of experimental autoimmune encephalomyelitis and for early Th17 cell differentiation in vivo. Moreover, IL-1 signaling in T cells was required in dendritic cell-mediated Th17 cell differentiation from naive or regulatory precursors and IL-1 synergized with IL-6 and IL-23 to regulate Th17 cell differentiation and maintain cytokine expression in effector Th17 cells. Importantly, IL-1 regulated the expression of the transcription factors IRF4 and RORgammat during Th17 cell differentiation; overexpression of these two factors resulted in IL-1-independent Th17 cell polarization. Our data thus indicate a critical role of IL-1 in Th17 cell differentiation and this pathway may serve as a unique target for Th17 cell-mediated immunopathology.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Interleucina-1/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/citologia , Linfócitos T Auxiliares-Indutores/citologia , Animais , Linhagem da Célula , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Regulação para Cima
19.
Int J Mol Sci ; 19(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297679

RESUMO

A novel pathway of vitamin D activation by CYP11A has previously been elucidated. To define the mechanism of action of its major dihydroxy-products, we tested the divergence and overlap between the gene expression profiles of human epidermal keratinocytes treated with either CYP11A1-derived 20,23(OH)2D3 or classical 1,25(OH)2D3. Both secosteroids have significant chemical similarity with the only differences being the positions of the hydroxyl groups. mRNA was isolated and examined by microarray analysis using Illumina's HumanWG-6 chip/arrays and subsequent bioinformatics analyses. Marked differences in the up- and downregulated genes were observed between 1,25(OH)2D3- and 20,23(OH)2D3-treated cells. Hierarchical clustering identified both distinct, opposite and common (overlapping) gene expression patterns. CYP24A1 was a common gene strongly activated by both compounds, a finding confirmed by qPCR. Ingenuity pathway analysis identified VDR/RXR signaling as the top canonical pathway induced by 1,25(OH)2D3. In contrast, the top canonical pathway induced by 20,23(OH)2D3 was AhR, with VDR/RXR being the second nuclear receptor signaling pathway identified. QPCR analyses validated the former finding by revealing that 20,23(OH)2D3 stimulated CYP1A1 and CYP1B1 gene expression, effects located downstream of AhR. Similar stimulation was observed with 20(OH)D3, the precursor to 20,23(OH)2D3, as well as with its downstream metabolite, 17,20,23(OH)3D3. Using a Human AhR Reporter Assay System we showed marked activation of AhR activity by 20,23(OH)2D3, with weaker stimulation by 20(OH)D3. Finally, molecular modeling using an AhR LBD model predicted vitamin D3 hydroxyderivatives to be good ligands for this receptor. Thus, our microarray, qPCR, functional studies and molecular modeling indicate that AhR is the major receptor target for 20,23(OH)2D3, opening an exciting area of investigation on the interaction of different vitamin D3-hydroxyderivatives with AhR and the subsequent downstream activation of signal transduction pathways in a cell-type-dependent manner.


Assuntos
Calcitriol/farmacologia , Di-Hidroxicolecalciferóis/farmacologia , Queratinócitos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sítios de Ligação , Células Cultivadas , Humanos , Queratinócitos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores de Hidrocarboneto Arílico/química
20.
Lab Invest ; 97(6): 706-724, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218743

RESUMO

Ultraviolet B (UVB), in addition to having carcinogenic activity, is required for the production of vitamin D3 (D3) in the skin which supplies >90% of the body's requirement. Vitamin D is activated through hydroxylation by 25-hydroxylases (CYP2R1 or CYP27A1) and 1α-hydroxylase (CYP27B1) to produce 1,25(OH)2D3, or through the action of CYP11A1 to produce mono-di- and trihydroxy-D3 products that can be further modified by CYP27B1, CYP27A1, and CYP24A1. The active forms of D3, in addition to regulating calcium metabolism, exert pleiotropic activities, which include anticarcinogenic and anti-melanoma effects in experimental models, with photoprotection against UVB-induced damage. These diverse effects are mediated through an interaction with the vitamin D receptor (VDR) and/or as most recently demonstrated through action on retinoic acid orphan receptors (ROR)α and RORγ. With respect to melanoma, low levels of 25(OH)D are associated with thicker tumors and reduced patient survival. Furthermore, single-nucleotide polymorphisms of VDR and the vitamin D-binding protein (VDP) genes affect melanomagenesis or disease outcome. Clinicopathological analyses have shown positive correlation between low or undetectable expression of VDR and/or CYP27B1 in melanoma with tumor progression and shorter overall (OS) and disease-free survival (DFS) times. Paradoxically, this correlation was reversed for CYP24A1 (inactivating 24-hydroxylase), indicating that this enzyme, while inactivating 1,25(OH)2D3, can activate other forms of D3 that are products of the non-canonical pathway initiated by CYP11A1. An inverse correlation has been found between the levels of RORα and RORγ expression and melanoma progression and disease outcome. Therefore, we propose that defects in vitamin D signaling including D3 activation/inactivation, and the expression and activity of the corresponding receptors, affect melanoma progression and the outcome of the disease. The existence of multiple bioactive forms of D3 and alternative receptors affecting the behavior of melanoma should be taken into consideration when applying vitamin D management for melanoma therapy.


Assuntos
Melanoma/metabolismo , Receptores de Calcitriol , Vitamina D , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Progressão da Doença , Epiderme/metabolismo , Epiderme/fisiologia , Humanos , Camundongos , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/fisiologia , Transdução de Sinais/fisiologia , Raios Ultravioleta , Vitamina D/metabolismo , Vitamina D/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA