Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 689: 108458, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32524997

RESUMO

Our previous studies showed that silibinin promoted activation of caspases to induce apoptosis in human breast cancer MCF-7 cells by down-regulating the protein expression level of estrogen receptor (ER) α and up-regulating ERß. Recently, it has been reported that silibinin-induced apoptosis also involved nuclear translocation of apoptosis-inducing factor (AIF). Here we report that silibinin induces nuclear translocation of AIF through the down-regulation of ERα and up-regulation of ERß in a concentration dependent manner in MCF-7 cells. AIF knockdown with siRNA significantly reverses silibinin-induced apoptosis. The nuclear translocation of AIF is enhanced by treatment with MPP, an ERα antagonist, and blocked with PPT, an ERα agonist. In contrast to ERα activity, the nuclear AIF is increased with an ERß agonist, DPN and blocked with an ERß antagonist, PHTPP. Autophagy, negatively regulated by ERα, positively controls AIF-mediated apoptosis, as evidenced by the preventive effect of autophagy inhibitor 3-MA and siRNA targeting LC3, on the nuclear translocation of AIF and cell death induced by silibinin co-treatment with or without MPP. In sum we conclude that AIF in nuclei is involved in silibinin-induced apoptosis, and the nuclear translocation of AIF is increased by down-regulated ERα pathway and/or up-regulated ERß pathway in MCF-7 cells, accompanying up-regulation of autophagy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Fator de Indução de Apoptose/metabolismo , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Silibina/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Feminino , Humanos , Células MCF-7
2.
Arch Biochem Biophys ; 671: 42-51, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31085166

RESUMO

Mitochondria are dynamically regulated by fission and fusion processes. Silibinin induces apoptosis of MCF-7 and MDA-MB-231 human breast cancer cells. However, whether or not mitochondria dysfunction is involved in the apoptosis induction with silibinin of both types of the cells remains unknown. We here report that silibinin decreases the mitochondrial mass in terms of MitoTracker Green staining in both breast cancer cells. Silibinin induces morphological changes of mitochondria from oval to truncated or fragmented shapes accordingly. Condensed crests are observed in mitochondria by transmission electron microscopy. Silibinin causes mitochondrial membrane potential reduced. The expression of mitochondrial fission-associated proteins including dynamin-related protein 1 (DRP1) is up-regulated, whereas expression of the mitochondrial fusion-associated proteins, optic atrophy 1 and mitofusin 1, is down-regulated. In addition, silibinin treatment down-regulates ATP content as well as the levels of mitochondrial biogenesis-regulators including mitochondrial transcription factor A, peroxisome proliferator-activated receptor gamma coactivator 1 and nuclear respiratory factor 2. Moreover, treatments with DRP1 inhibitor, mdivi-1, or with DRP1-targetted siRNA efficiently prevent silibinin-induced apoptosis in the breast cancer cells, whereas inhibition of DRP1 phosphorylation with staurosporine increases apoptosis furthermore. Taken together, we conclude that silibinin impairs mitochondrial dynamics and biogenesis, leading to apoptosis of MCF-7 and MDA-MB-123 cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Silibina/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Linhagem Celular Tumoral , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Biogênese de Organelas , Quinazolinonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA