Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 611(7935): 387-398, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289338

RESUMO

Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.


Assuntos
Genoma Humano , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Metilação de DNA , Leucemia Mieloide Aguda/genética , Genoma Humano/genética , Regiões Promotoras Genéticas , Elementos Facilitadores Genéticos , Inativação Gênica , Reprodutibilidade dos Testes , Sistemas CRISPR-Cas , Análise de Sequência , DNA (Citosina-5-)-Metiltransferases , Regulação Leucêmica da Expressão Gênica
2.
PLoS Pathog ; 19(3): e1011238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961862

RESUMO

A major threat to rice production is the disease epidemics caused by insect-borne viruses that emerge and re-emerge with undefined origins. It is well known that some human viruses have zoonotic origins from wild animals. However, it remains unknown whether native plants host uncharacterized endemic viruses with spillover potential to rice (Oryza sativa) as emerging pathogens. Here, we discovered rice tiller inhibition virus (RTIV), a novel RNA virus species, from colonies of Asian wild rice (O. rufipogon) in a genetic reserve by metagenomic sequencing. We identified the specific aphid vector that is able to transmit RTIV and found that RTIV would cause low-tillering disease in rice cultivar after transmission. We further demonstrated that an infectious molecular clone of RTIV initiated systemic infection and causes low-tillering disease in an elite rice variety after Agrobacterium-mediated inoculation or stable plant transformation, and RTIV can also be transmitted from transgenic rice plant through its aphid vector to cause disease. Finally, global transcriptome analysis indicated that RTIV may disturb defense and tillering pathway to cause low tillering disease in rice cultivar. Thus, our results show that new rice viral pathogens can emerge from native habitats, and RTIV, a rare aphid-transmitted rice viral pathogen from native wild rice, can threaten the production of rice cultivar after spillover.


Assuntos
Afídeos , Oryza , Vírus , Animais , Humanos , Oryza/genética , Afídeos/genética , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/genética , Vírus/genética , Doenças das Plantas
3.
J Immunol ; 211(9): 1426-1437, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712758

RESUMO

Allogeneic hematopoietic stem cell transplantation (alloSCT) is, in many clinical settings, the only curative treatment for acute myeloid leukemia (AML). The clinical benefit of alloSCT greatly relies on the graft-versus-leukemia (GVL) effect. However, AML relapse remains the top cause of posttransplant death; this highlights the urgent need to enhance GVL. Studies of human GVL have been hindered by the lack of optimal clinically relevant models. In this article, we report, the successful establishment of a novel (to our knowledge) humanized GVL model system by transplanting clinically paired donor PBMCs and patient AML into MHC class I/II knockout NSG mice. We observed significantly reduced leukemia growth in humanized mice compared with mice that received AML alone, demonstrating a functional GVL effect. Using this model system, we studied human GVL responses against human AML cells in vivo and discovered that AML induced T cell depletion, likely because of increased T cell apoptosis. In addition, AML caused T cell exhaustion manifested by upregulation of inhibitory receptors, increased expression of exhaustion-related transcription factors, and decreased T cell function. Importantly, combined blockade of human T cell-inhibitory pathways effectively reduced leukemia burden and reinvigorated CD8 T cell function in this model system. These data, generated in a highly clinically relevant humanized GVL model, not only demonstrate AML-induced inhibition of alloreactive T cells but also identify promising therapeutic strategies targeting T cell depletion and exhaustion for overcoming GVL failure and treating AML relapse after alloSCT.

4.
J Am Chem Soc ; 146(1): 868-877, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153404

RESUMO

Great effort has been made to encapsulate or coat living mammalian cells for a variety of applications ranging from diabetes treatment to three-dimensional printing. However, no study has reported the synthesis of a biomimetic bacterial capsule to display high-affinity aptamers on the cell surface for enhanced cell recognition. Therefore, we synthesized an ultrathin alginate-polylysine coating to display aptamers on the surface of living cells with natural killer (NK) cells as a model. The results show that this coating-mediated aptamer display is more stable than direct cholesterol insertion into the lipid bilayer. The half-life of the aptamer on the cell surface can be increased from less than 1.5 to over 20 h. NK cells coated with the biomimetic bacterial capsule exhibit a high efficiency in recognizing and killing target cells. Therefore, this work has demonstrated a promising cell coating method for the display of aptamers for enhanced cell recognition.


Assuntos
Aptâmeros de Nucleotídeos , Animais , Aptâmeros de Nucleotídeos/metabolismo , Cápsulas Bacterianas/metabolismo , Biomimética , Membrana Celular/metabolismo , Técnica de Seleção de Aptâmeros/métodos , Mamíferos/metabolismo
5.
Small ; : e2309252, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217311

RESUMO

The energy transition to renewables necessitates innovative storage solutions beyond the capacities of lithium-ion batteries. Aluminum-ion batteries (AIBs), particularly their aqueous variants (AAIBs), have emerged as potential successors due to their abundant resources, electrochemical advantages, and eco-friendliness. However, they grapple with achieving their theoretical voltage potential, often yielding less than expected. This perspective article provides a comprehensive examination of the voltage challenges faced by AAIBs, attributing gaps to factors such as the aluminum reduction potential, hydrogen evolution reaction, and aluminum's inherent passivation. Through a critical exploration of methodologies, strategies, such as underpotential deposition, alloying, interface enhancements, tailored electrolyte compositions, and advanced cathode design, are proposed. This piece seeks to guide researchers in harnessing the full potential of AAIBs in the global energy storage landscape.

6.
J Transl Med ; 22(1): 7, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167140

RESUMO

BACKGROUND: Prenatal exposure to intrauterine inflammation (IUI) is a crucial event in preterm birth (PTB) pathophysiology, increasing the incidence of neurodevelopmental disorders. Gut microbiota and metabolite profile alterations have been reported to be involved in PTB pathophysiology. METHOD AND RESULTS: In this study, IUI-exposed PTB mouse model was established and verified by PTB rate and other perinatal adverse reactions; LPS-indued IUI significantly increased the rates of PTB, apoptosis and inflammation in placenta tissue samples. LPS-induced IUI caused no significant differences in species richness and evenness but significantly altered the species abundance distribution. Non-targeted metabolomics analysis indicated that the metabolite profile of the preterm mice was altered, and differential metabolites were associated with signaling pathways including pyruvate metabolism. Furthermore, a significant positive correlation between Parasutterella excrementihominis and S4572761 (Nb-p-coumaroyltryptamine) and Mreference-1264 (pyruvic acid), respectively, was observed. Lastly, pyruvic acid treatment partially improved LPS-induced IUI phenotypes and decreased PTB rates and decreased the apoptosis and inflammation in placenta tissue samples. CONCLUSION: This study revealed an association among gut microbiota dysbiosis, metabolite profile alterations, and LPS-induced IUI and PTB in mice models. Our investigation revealed the possible involvement of gut microbiota in the pathophysiology of LPS-induced IUI and PTB, which might be mediated by metabolites such as pyruvic acid. Future studies should be conducted to verify the findings through larger sample-sized animal studies and clinical investigations.


Assuntos
Microbioma Gastrointestinal , Nascimento Prematuro , Recém-Nascido , Gravidez , Humanos , Feminino , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Nascimento Prematuro/etiologia , Ácido Pirúvico/efeitos adversos , Inflamação/metabolismo , Inseminação Artificial
7.
Bioorg Chem ; 150: 107493, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38870703

RESUMO

2. This research investigates the impact of the EGCG-CSH/n-HA/CMC composite material on bone defect repair, emphasizing its influence on macrophage polarization and osteogenic differentiation of BMSCs. Comprehensive evaluations of the composite's physical and chemical characteristics were performed. BMSC response to the material was tested in vitro for proliferation, migration, and osteogenic potential. An SD rat model was employed for in vivo assessments of bone repair efficacy. Both transcriptional and proteomic analyses were utilized to delineate the mechanisms influencing macrophage behavior and stem cell differentiation. The material maintained excellent structural integrity and significantly promoted BMSC functions critical to bone healing. In vivo results confirmed accelerated bone repair, and molecular analysis highlighted the role of macrophage M2 polarization, particularly through changes in the SIRPA gene and protein expression. EGCG-CSH/n-HA/CMC plays a significant role in enhancing bone repair, with implications for macrophage and BMSC function. Our findings suggest that targeting SIRPA may offer new therapeutic opportunities for bone regeneration.

8.
Phys Chem Chem Phys ; 25(4): 3544, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36636943

RESUMO

Correction for 'Rich magnetic phase transitions and completely dual-spin polarization of zigzag PC3 nanoribbons under uniaxial strain' by Hui-Min Ni et al., Phys. Chem. Chem. Phys., 2023, https://doi.org/10.1039/d2cp05066h.

9.
Phys Chem Chem Phys ; 25(3): 2342-2348, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36597962

RESUMO

Among many modulation methods, strain engineering is often chosen for nanomaterials to produce tunable band gaps continuously. Inspired by the recently reported two-dimensional material PC3, we explore the tuning of strain on the spin-dependent transport properties of PC3 nanoribbons using the first-principle approach. Surprisingly, strain regulation achieves uninterrupted completely dual-spin polarization over a wide energy range near EF. Analysis reveals that the peculiar transmission spectra arise from the interesting evolution of the band structure, in which strain induces bands to shift and broaden/flatten. This results in triggering the transition of PC3NRs from bandgap-tunable bipolar magnetic semiconductors to spin-gapless semiconductors to ferromagnetic metals or half-metal magnets. Their unique performance demonstrates great potential in spintronics, and our study is expected to provide ideas and theoretical support for the design and application of novel PC3-based spintronic devices in the future.

10.
Exp Cell Res ; 418(1): 113215, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605650

RESUMO

Preeclampsia (PE) is a pregnancy-associated complication accompanied by gestational hypertension and proteinuria, affecting 2-8% of pregnancies globally. The placental trophoblast cell invasion of decidua and myometrium during early gestation is crucial for healthy placentation. Thus, trophoblast dysfunction might contribute to PE onset. Therefore, further investigations are needed to elucidate the underlying mechanism of trophoblast cell functions. In the present study, we identified a novel pseudogene named C-Type Lectin Domain Family 4 Member G Pseudogene 1 (CLEC4GP1), which was aberrantly expressed in PE placental tissues. In vitro analyses showed that CLEC4GP1 overexpression significantly increased the cell viability and invasiveness and decreased the apoptosis rate of HTR-8/SVneo and JEG-3 cells, while CLEC4GP1 knockdown exerted opposite effects, suggesting the beneficial role of CLEC4GP1 in trophoblast cells. Next, co-expression analysis found that CLEC4GP1 was negatively correlated with Interleukin 15 (IL-15). The expression of IL-15 dramatically increased in PE placental tissues. In HTR-8/SVneo and JEG-3 cells, IL-15 exhibited detrimental effects, opposite to CLEC4GP1, and they were negatively correlated. In addition, CLEC4GP1 attenuates the mRNA stability of IL-16 by inhibiting the binding between human antigen R (HuR) protein and IL-15 RNA. Finally, the obverse effects of CLEC4GP1 and IL-15 were investigated, and results showed that IL-15 reverted CLEC4GP1 induced cellular functions. In brief, these data suggest that CLEC4GP1/IL-15 axis might modulate the occurrence and progression of PE via influencing the trophoblast cell viability, apoptosis, and invasive capability. This study provided cognizance of targeting the CLEC4GP1/IL-15 axis as a novel therapeutic approach to mitigate PE progression.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , Interleucina-15/genética , Placenta/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Pseudogenes/genética , Trofoblastos/metabolismo
11.
Acta Pharmacol Sin ; 44(1): 44-57, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35882957

RESUMO

It is of great clinical significance to develop potential novel strategies to prevent diabetic cardiovascular complications. Endothelial progenitor cell (EPC) dysfunction is a key contributor to diabetic vascular complications. In the present study we evaluated whether low-dose nifedipine could rescue impaired EPC-mediated angiogenesis and prevent cardiovascular complications in diabetic mice. Diabetes was induced in mice by five consecutive injections of streptozotocin (STZ, 60 mg·kg-1·d-1, i.p.). Diabetic mice were treated with low-dose nifedipine (1.5 mg·kg-1·d-1, i.g.) for six weeks. Then, circulating EPCs in the peripheral blood were quantified, and bone marrow-derived EPCs (BM-EPCs) were prepared. We showed that administration of low-dose nifedipine significantly increased circulating EPCs, improved BM-EPCs function, promoted angiogenesis, and reduced the cerebral ischemic injury in diabetic mice. Furthermore, we found that low-dose nifedipine significantly increased endothelial nitric oxide synthase (eNOS) expression and intracellular NO levels, and decreased the levels of intracellular O2.- and thrombospondin-1/2 (TSP-1/2, a potent angiogenesis inhibitor) in BM-EPCs of diabetic mice. In cultured BM-EPCs, co-treatment with nifedipine (0.1, 1 µM) dose-dependently protected against high-glucose-induced impairment of migration, and suppressed high-glucose-induced TSP-1 secretion and superoxide overproduction. In mice with middle cerebral artery occlusion, intravenous injection of diabetic BM-EPCs treated with nifedipine displayed a greater ability to promote local angiogenesis and reduce cerebral ischemic injury compared to injection of diabetic BM-EPCs treated with vehicle, and the donor-derived BM-EPCs homed to the recipient ischemic brain. In conclusion, low-dose nifedipine can enhance EPCs' angiogenic potential and protect against cerebral ischemic injury in diabetic mice. It is implied that chronic treatment with low-dose nifedipine may be a safe and economic manner to prevent ischemic diseases (including stroke) in diabetes.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Camundongos , Animais , Células Progenitoras Endoteliais/metabolismo , Nifedipino/farmacologia , Nifedipino/uso terapêutico , Trombospondina 1/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Isquemia/metabolismo , Neovascularização Fisiológica , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Células Cultivadas
12.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37212402

RESUMO

The unique edge states of the zigzag ß-SiC7 nanoribbons aroused our attention, and therefore, based on first-principles calculations, we investigated their spin-dependent electronic transport properties by constructing controllable defects to modulate these special edge states. Interestingly, by introducing rectangular edge defects in the SiSi and SiC edge-terminated systems, not only the spin-unpolarized is successfully converted to completely spin-polarized, but also the direction of polarization can be switched, thus enabling a dual spin filter. The analyses further reveal that the two transmission channels with opposite spins are spatially separated and that the transmission eigenstates are highly concentrated at the relative edges. The specific edge defect introduced only suppresses the transmission channel at the same edge but reserves the transmission channel at the other edge. In addition, for the CSi and CC edge-terminated systems, an additional spin-down band exists due to spin splitting in the spin-up band at EF, so that besides the original spatially separated two spin-opposite channels, an extra spin channel is distributed at the upper edge, resulting in unidirectional fully spin-polarized transport. The peculiar spatially separated edge states and excellent spin filtering properties could open up further possibilities for ß-SiC7-based electronic devices in spintronics applications.

13.
Arch Gynecol Obstet ; 308(3): 787-795, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36602559

RESUMO

BACKGROUND: This paper evaluated the clinical utility of massively parallel sequencing-based non-invasive prenatal testing (NIPT) for detecting trisomy 21 (T21), T18, T13, sex chromosome aneuploidies (SCA), and rare chromosome aneuploidies (RCA) among the data collected by a clinical laboratory in southern China. METHODS: In a 3-year period between January 2017 and December 2019, over 40,000 pregnant women underwent NIPT clinical screening test for fetal T21, T18, T13, SCA, and RCA in our laboratory. NIPT samples were processed using the NextSeq CN500 platform. The positive results were confirmed by karyotyping, and chromosomal microarray analysis (CMA) or copy number variants (CNV) sequencing. Details of the pregnancy outcomes were collected via telephone interview. RESULTS: NIPT results were available for 41,819 cases; 691 positive cases were reported. The overall sensitivity for detection of T21, T18, T13, SCA, and RCA was 99.21, 100.00, 100.00, 98.55, and 100.00%, and the specificity was 99.95, 99.94, 99.98, 99.69, and 99.92%, respectively. The positive predictive values (PPVs) for detection of T21, T18, T13, SCA, and RCA were 85.62, 45.24, 40.00, 34.17, and 13.51%, respectively, and those for detection of 45,X, 47,XXY, 47,XXX, 47,XYY, and 46,XY(delX) 20.00, 59.18, 28.95, 61.54, and 25.00%, respectively. Regarding pregnancy outcomes, 92.38% of the pregnancies with confirmed aneuploidies were terminated, and 91.20% of those identified as having a false-positive result were carried to term. Among 252 unconfirmed cases, 24.60% of the pregnancies were terminated and 38.10% carried to term, while 37.30% declined interview. CONCLUSIONS: NIPT is widely used to screen fetal aneuploidies based on its high sensitivity and specificity. However, in this study, the PPVs of NIPT in terms of detecting T18, T13, XO, XXX and RCA were < 50%. In addition, more than one-third of NIPT-positive women did not accept invasive prenatal diagnosis. Confirmatory diagnosis is strongly recommended for women with positive NIPT outcomes before any further decision is made.


Assuntos
Síndrome de Down , Gestantes , Feminino , Gravidez , Humanos , Laboratórios Clínicos , Diagnóstico Pré-Natal/métodos , Síndrome de Down/diagnóstico , Aneuploidia , Resultado da Gravidez
14.
J Am Chem Soc ; 144(25): 11444-11455, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35723429

RESUMO

Aqueous aluminum metal batteries (AMBs) are regarded as one of the most sustainable energy storage systems among post-lithium-ion candidates, which is attributable to their highest theoretical volumetric capacity, inherent safe operation, and low cost. Yet, the development of aqueous AMBs is plagued by the incapable aluminum plating in an aqueous solution and severe parasitic reactions, which results in the limited discharge voltage, thus making the development of aqueous AMBs unsuccessful so far. Here, we demonstrate that amorphization is an effective strategy to tackle these critical issues of a metallic Al anode by shifting the reduction potential for Al deposition. The amorphous aluminum (a-Al) interfacial layer is triggered by an in situ lithium-ion alloying/dealloying process on a metallic Al substrate with low strength. Unveiled by experimental and theoretical investigations, the amorphous structure greatly lowers the Al nucleation energy barrier, which forces the Al deposition competitive to the electron-stealing hydrogen evolution reaction (HER). Simultaneously, the inhibited HER mitigates the passivation, promoting interfacial ion transfer kinetics and enabling steady aluminum plating/stripping for 800 h in the symmetric cell. The resultant multiple full cells using Al@a-Al anodes deliver approximately a 0.6 V increase in the discharge voltage plateau compared to that of bare Al-based cells, which far outperform all reported aqueous AMBs. In both symmetric cells and full cells, the excellent electrochemical performances are achieved in a noncorrosive, low-cost, and fluorine-free Al2(SO4)3 electrolyte, which is ecofriendly and can be easily adapted for sustainable large-scale applications. This work brings an intriguing picture of the design of metallic anodes for reversible and high-voltage AMBs.

15.
Small ; 18(43): e2107773, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934834

RESUMO

The high cost and scarcity of lithium resources have prompted researchers to seek alternatives to lithium-ion batteries. Among emerging "Beyond Lithium" batteries, rechargeable aluminum-ion batteries (AIBs) are yet another attractive electrochemical storage device due to their high specific capacity and the abundance of aluminum. Although the current electrochemical performance of nonaqueous AIBs is better than aqueous AIBs (AAIBs), AAIBs have recently gained attention due to their low cost and enhanced safety. Extensive efforts are devoted to developing AAIBs in the last few years. Yet, it is still challenging to achieve stable electrodes with good electrochemical performance and electrolytes without side reactions. This review summarizes the recent progress in the exploration of anode and cathode materials and the selection of electrolytes of AAIBs. Lastly, the main challenges and future research outlook of high-performance AAIBs are also presented.

16.
Cell Mol Biol (Noisy-le-grand) ; 68(10): 178-181, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37114253

RESUMO

Pulmonary Tuberculosis (TB) is common in China, but tuberculosis with coagulation disorders and pancytopenia have rarely been reported in the past. In this report presented, a 70-year-old female was admitted to the hospital with poor appetite, dark urine, nausea, vomiting, fatigue, and bilateral lower limb edema; chest CT suggested diffuse infectious lesions in both lungs, coagulation dysfunction, and complete pancytopenia, which was initially considered to be caused by severe infection. However, the patient's symptoms did not improve by potent empiric antibiotics treatment, and a repeat chest CT showed that the lung lesions deteriorated more than before, and coagulation disorders and pancytopenia did not improve. Finally, the TB patient tested positive for enzyme-linked immunospot assay (ELISPOT) and metagenomic sequencing (mNGS) of Mycobacterium tuberculosis (MTB) using bronchoscopic alveolar lavage. So ati-TB was initiated with HRftELfx (isoniazid, 0.3 g qd; rifapentine, 0.45 g biw; ethambutol, 0.75 g qd; and levofloxacin, 0.5 g qd) regimen. Eventually, the patient's clinical symptoms improved significantly, the pulmonary lesions were absorbed, and the coagulation function and blood cell count returned to normal, which achieved a satisfactory treatment effect.


Assuntos
Transtornos da Coagulação Sanguínea , Mycobacterium tuberculosis , Pancitopenia , Tuberculose Pulmonar , Tuberculose , Feminino , Humanos , Idoso , Mycobacterium tuberculosis/genética , ELISPOT , Pancitopenia/diagnóstico , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Tuberculose/microbiologia
17.
BMC Pregnancy Childbirth ; 22(1): 962, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36564774

RESUMO

BACKGROUND: Menstrual cycle length (MCL) and ovarian response varies widely among women of childbearing age. They are provided with anti-Mu¨llerian hormone (AMH) cutoffs for "normal" and "weakened" ovarian responses, which give an early warning of the onset of decreased ovarian response. METHODS: This was a retrospective study in women aged 21 to 35 years with MCLs of 21-35 days receiving in vitro fertilization (IVF) treatment at Center for Reproductive Medicine from October 2018 to October 2021. Intergroup variables were balanced using propensity score matching based on age and BMI, and each case patient (patients with MCLs of 21-25 days) was matched with three control patients (patients with MCLs of 26-35 days). A receiver operating characteristic curve was used to calculate the AMH cutoff values. RESULTS: We included 135 patients with MCLs of 21-25 days and 405 matched control patients with MCLs of 26-35 days who received IVF treatment. The case group had significantly fewer retrieved oocytes, lower AMH values and higher initial and total Gonadotropin (Gn) levels during controlled ovarian hyperstimulation than the control group. The ovarian response began to decrease when AMH was < 3.5 ng/ml in the case group and < 2.7 ng/ml in the control group. CONCLUSION: In young women with MCLs of 21-35 days, short MCL was negatively correlated with AMH values and the number of oocytes retrieved. In patients with MCLs of 21-25 days and 26-35 days, the AMH cutoff values corresponding to the onset of decreased ovarian response were 3.5 ng/ml and 2.7 ng/ml, respectively.


Assuntos
Hormônio Antimülleriano , Indução da Ovulação , Feminino , Humanos , Adulto , Estudos Retrospectivos , Pontuação de Propensão , Ovário , Fertilização in vitro
18.
Ecotoxicol Environ Saf ; 242: 113885, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35849906

RESUMO

Vanadium dioxide nanoparticles (VO2 NPs) have been massively produced due to their excellent metal-insulator transition characteristics for various applications. Pilot studies indicated the toxicity of VO2 NPs to bacteria and mammalian cells, but the environmental hazards of VO2 NPs to plants have been unrevealed to date. In this study, we reported the inhibitive effects of VO2 NPs to the growth and photosynthesis of pea seedlings. Laboratory synthesized monoclinic VO2 NPs (N-VO2), commercial nanosized VO2 NPs (S-VO2), and commercial microsized VO2 particles (M-VO2) were carefully characterized for environmental toxicity evaluations. VO2 particles were supplemented to culture medium for seed germination and seedling growth. All three VO2 samples did not affect the germination rates of pee seeds, while serious growth inhibition of pea seedlings was observed at 10 mg/L for S-VO2 and N-VO2, and 100 mg/L for M-VO2. VO2 particles had no impact on the chlorophyll contents, but the photosynthesis of leaf was significantly decreased following the consequence of N-VO2 > S-VO2 > M-VO2. The inhibition of photosynthesis was attributed to the damage of acceptor side of photosystem II by VO2 particles at high concentrations. Abundant bioaccumulations of vanadium in roots aroused oxidative damage and changed the root structure. Our results collectively indicated that the phytotoxicity of VO2 NPs was related to the concentration, size and crystalline degree.


Assuntos
Nanopartículas Metálicas , Óxidos , Pisum sativum , Plântula , Compostos de Vanádio , Germinação/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Óxidos/toxicidade , Pisum sativum/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Compostos de Vanádio/toxicidade
19.
J Med Virol ; 93(12): 6828-6832, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34314048

RESUMO

A cluster of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections was found in a cargo ship under repair in Zhoushan, China. Twelve of 20 crew members were identified as SARS-CoV-2 positive. We analyzed four sequences and identified them all in the Delta branch emerging from India with 7-8 amino acid mutation sites in the spike protein.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , China , Genoma Viral/genética , Humanos , Índia , Filogenia , Análise de Sequência/métodos , Navios/métodos , Glicoproteína da Espícula de Coronavírus/genética
20.
Plant Cell ; 30(1): 167-177, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233856

RESUMO

In chromatin, histone methylation affects the epigenetic regulation of multiple processes in animals and plants and is modulated by the activities of histone methyltransferases and histone demethylases. The jumonji domain-containing histone demethylases have diverse functions and can be classified into several subfamilies. In humans, the jumonji domain-containing Lysine (K)-Specific Demethylase 5/Jumonji and ARID Domain Protein (KDM5/JARID) subfamily demethylases are specific for histone 3 lysine 4 trimethylation (H3K4me3) and are important drug targets for cancer treatment. In Arabidopsis thaliana, the KDM5/JARID subfamily H3K4me3 demethylase JUMONJI14 (JMJ14) plays important roles in flowering, gene silencing, and DNA methylation. Here, we report the crystal structures of the JMJ14 catalytic domain in both substrate-free and bound forms. The structures reveal that the jumonji and C5HC2 domains contribute to the specific recognition of the H3R2 and H3Q5 to facilitate H3K4me3 substrate specificity. The critical acidic residues are conserved in plants and animals with the corresponding mutations impairing the enzyme activity of both JMJ14 and human KDM5B, indicating a common substrate recognition mechanism for KDM5 subfamily demethylases shared by plants and animals and further informing efforts to design targeted inhibitors of human KDM5.


Assuntos
Proteínas de Arabidopsis/metabolismo , Histona Desmetilases/metabolismo , Histonas/química , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Domínio Catalítico , Sequência Conservada , Humanos , Lisina/metabolismo , Metilação , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA