RESUMO
Echinococcosis is a serious zoonotic life-threatening parasitic disease caused by metacestodes of Echinococcus spp., and appropriate sensitive diagnosis and genotyping techniques are required to detect infections and study the genetic characterization of Echinococcus spp. isolates. In this study, a single-tube nested PCR (STNPCR) method was developed and evaluated for the detection of Echinococcus spp. DNA based on the COI gene. STNPCR was 100 times more sensitive than conventional PCR and showed the same sensitivity to common nested PCR (NPCR); but with a lower risk of cross-contamination. The limit of detection of the developed STNPCR method was estimated to be 10 copies/µL of the recombinant standard plasmids of Echinococcus spp. COI gene. In clinical application, 8 cyst tissue samples and 12 calcification tissue samples were analysed by conventional PCR with outer and inner primers and resulted in 100.00% (8/8) and 8.33% (1/12), 100.00% (8/8) and 16.67% (2/12) positive reactions, respectively, while STNPCR and NPCR were all able to identify the presence of genomic DNA in 100.00% (8/8) and 83.33% (10/12) of the same samples. Due to its high sensitivity combined with the potential for the elimination of cross-contamination, the STNPCR method was suitable for epidemiological investigations and characteristic genetic studies of Echinococcus spp. tissue samples. The STNPCR method can effectively amplify low concentrations of genomic DNA from calcification samples and cyst residues infected with Echinococcus spp. Subsequently, the sequences of positive PCR products were obtained, which were useful for haplotype analysis, genetic diversity, and evolution studies of Echinococcus spp., and understanding of Echinococcus spp. dissemination and transmission among the hosts.
Assuntos
Equinococose , Echinococcus , Animais , Humanos , Echinococcus/genética , Reação em Cadeia da Polimerase/métodos , Equinococose/diagnóstico , PlasmídeosRESUMO
Cryptosporidium and Giardia are important intestinal zoonotic pathogens that can infect various hosts and cause diarrhoeal diseases. There are few reports of the epidemiological prevalence and molecular characterization of Cryptosporidium and Giardia in wild birds around Qinghai Lake and in the surrounding areas on the Qinghai-Tibetan Plateau, Northwest China. Therefore, the aim of this study was to determine the Cryptosporidium spp. and Giardia duodenalis genotypes and their epidemiological prevalence in wild birds by PCR amplification. To our knowledge, this is the first report of a variety of Cryptosporidium spp. and G. duodenalis infections in wild birds from that area, with overall prevalence rates of 8.98% (61/679) and 3.39% (23/679), respectively. Furthermore, PCR sequencing confirmed the presence of Cryptosporidium baileyi (n = 3), Cryptosporidium parvum (n = 58), and G. duodenalis assemblage B (n = 19) and E (n = 4) in wild birds from the areas around Qinghai Lake. The results of the present study demonstrated the wide distribution of Cryptosporidium and Giardia among wild birds, which has potential public health significance. Moreover, the study findings also provided useful molecular epidemiological data for monitoring and investigating the two parasitic protozoa in wild animals and surrounding environments.
Assuntos
Doenças das Aves/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/isolamento & purificação , Diarreia/veterinária , Giardia lamblia/isolamento & purificação , Giardíase/veterinária , Animais , Animais Selvagens , Doenças das Aves/parasitologia , Aves , Criptosporidiose/epidemiologia , Cryptosporidium/genética , Diarreia/epidemiologia , Diarreia/parasitologia , Genótipo , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/parasitologia , Lagos , Epidemiologia Molecular , Reação em Cadeia da Polimerase/veterinária , Prevalência , Tibet/epidemiologiaRESUMO
The present study reports a rare case of Taenia saginata infection, which was initially diagnosed as acute cholecystitis in a Tibetan patient at the Qinghai-Tibetan Plateau pastoral area, China. A 45-year-old female was initially diagnosed with acute cholecystitis at a hospital in China. She had a slight fever, weight loss and constipation and complained of pain in the upper abdomen and left back areas. Increase of monocyte, eosinophil and basophil levels were shown. Taenia sp. eggs were detected in a fecal examination. An adult tapeworm approximately 146 cm in length, whitish-yellow color, was collected from the patient after treatment with traditional Chinese medicine. The adult tapeworm had a scolex and proglottids with genital pores. The scolex was rectangular shape with 4 suckers and rostellum without hooklet. The cox1 gene sequence shared 99.5-99.8% homology with that of T. saginata from other regions in China. The patient was diagnosed finally infected with T. saginata by morphological and molecular charateristics.
Assuntos
Colecistite Aguda , Taenia saginata , Taenia , Teníase , Adulto , Animais , China , Erros de Diagnóstico , Feminino , Humanos , Pessoa de Meia-Idade , Taenia/genética , Taenia saginata/genética , Teníase/diagnóstico , TibetRESUMO
Cryptosporidium and Giardia are well-known parasitic protozoans responsible for waterborne and foodborne diarrhoeal diseases. However, data are not available on market vegetables contaminated with Cryptosporidium and Giardia in China. In the present study, 642 different vegetable samples were collected from Xining City street vendors in the Qinghai Province to study the Cryptosporidium and Giardia contamination rates via PCR and sequence analyses. Cryptosporidium spp. and Giardia duodenalis were detected in 16 (2.5%) and 73 (11.4%) samples, respectively. Two species of Cryptosporidium, C. parvum (n = 11) and C. andersoni (n = 5), were identified. G. duodenalis assemblage B was identified in almost all positive samples (n = 72), except one sample that contained G. duodenalis assemblage E. We report on the rate of Cryptosporidium and Giardia contamination in vegetables for the first time from the Qinghai Tibetan Plateau Area (QTPA) in China.
Assuntos
Cryptosporidium/isolamento & purificação , Giardia/isolamento & purificação , Oocistos/isolamento & purificação , Verduras/parasitologia , Animais , China , Cryptosporidium/genética , Contaminação de Alimentos , Giardia/genética , Giardia lamblia/genética , Reação em Cadeia da Polimerase , TibetRESUMO
This study examined Echinococcus spp. genotypes and genetic variants isolated from humans as well as domestic and wild animals from the Qinghai-Tibetan Plateau Area using the cox1 gene. All samples except the pika isolates were identified as the Echinococcus granulosus sensu stricto. Sixteen different haplotypes with considerable intraspecific variation were detected and characterized in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features, and the neutrality indexes computed via Tajima's D and Fu's Fs tests showed high negative values in E. granulosus s. s., indicating deviations from neutrality; the Fst values were low among the populations, implying that the populations were not genetically differentiated. The pika isolates were identified as E. multilocularis and E. shiquicus. Only one haplotype was recognized in the pika isolates. E. granulosus s. s. was the predominant species found in animals and humans, followed by E. multilocularis and E. shiquicus, with high genetic diversity circulating among the animals and humans in this area. Further studies are needed to cover many sample collection sites and larger numbers of pathogen isolates, which may reveal abundant strains and/or other haplotypes in the hydatid cysts infecting human and animal populations of the QTPA, China.
Assuntos
Equinococose/parasitologia , Equinococose/veterinária , Echinococcus/classificação , Echinococcus/genética , Variação Genética , Genótipo , Animais , Animais Domésticos , Animais Selvagens , China , Echinococcus/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , HumanosRESUMO
The occurrence of Cryptosporidium and Giardia species in slaughter, sewage and river waters of the Qinghai Tibetan Plateau Area (QTPA), China, was investigated. A total of 456 samples were collected from different locations in the QTPA to study the contamination rates of Cryptosporidium spp. and Giardia via PCR and subsequent sequence analysis. Ten samples were Cryptosporidium positive, and 97 were Giardia positive, as confirmed by PCR amplification of the SSU rRNA gene. The percentages of positive Cryptosporidium and Giardia detection were 2.2% (10/456) and 21.3% (97/456), respectively. Cryptosporidium was detected in only sewage and river waters. Six species of Cryptosporidium were identified: Cryptosporidium hominis (n = 5), C. andersoni (n = 1), C. environmental (n = 1), C. struthionis (n = 1), C. canis (n = 1), and C. parvum (n = 1). G. duodenalis assemblage A was identified in almost all positive samples (n = 96), and one sample harboured G. duodenalis assemblage E. The results suggest that Cryptosporidium and Giardia species circulate through the aqueous environment and different hosts. Therefore, we strongly recommend that the local government and health authorities in China undertake control measures to reduce the contamination of water sources by these protozoa to protect the health of humans and animals.
Assuntos
Criptosporidiose/parasitologia , Cryptosporidium/isolamento & purificação , Giardia/isolamento & purificação , Giardíase/parasitologia , Água/parasitologia , Matadouros , Animais , Criptosporidiose/epidemiologia , Cryptosporidium/classificação , Cryptosporidium/genética , Fezes/parasitologia , Giardia/classificação , Giardia/genética , Giardíase/epidemiologia , Humanos , Rios/parasitologia , Esgotos/parasitologia , Tibet/epidemiologiaRESUMO
The authors of this article would like to state that C. environmental is not a species, but rather a group of un-identified Cryptosporidium isolates from the environment. It is referred to in the literature as Cryptosporidium environmental sequence and not as a species.
RESUMO
Coenurosis is an important zoonotic helminthic disease caused by the larval stage of the tapeworm Taenia multiceps. This parasite typically infects the brain of the intermediate hosts, including sheep, goat, cattle and even humans. We report a case of T. multiceps infection in a yak confirmed by clinical symptoms, morphological characteristics, and molecular and phylogenetic analyses. The coenurus was thin-walled, whitish, and spherical in shape with a diameter of 10 cm. The parasite species was identified as T. multiceps by PCR amplification and sequencing of the 18S rRNA, cox1 and nad1 genes. Three gene sequences all showed high homology (all above 97%) with the reference sequences from different hosts. Moreover, phylogenetic reconstructions with the 3 published Taenia gene sequences confirmed that the Qinghai yak isolate was closely related to T. multiceps. Although there are advanced diagnosis and treatment methods for coenurosis, early infection is difficult to diagnose. Importantly, the findings of yak infection case should not be ignored due to its zoonotic potential.
Assuntos
Doenças dos Bovinos/parasitologia , Neurocisticercose/veterinária , Taenia/genética , Animais , Bovinos , Ciclo-Oxigenase 1/genética , Eletroforese em Gel de Ágar/veterinária , Masculino , NAD/genética , Neurocisticercose/parasitologia , Filogenia , Reação em Cadeia da Polimerase/veterinária , RNA Ribossômico 18S/genética , Alinhamento de Sequência/veterinária , Análise de Sequência de DNA/veterinária , Taenia/classificação , Taenia/isolamento & purificação , TibetRESUMO
Cryptosporidium is one of the most important genera of intestinal zoonotic pathogens, which can infect various hosts and cause diarrhoea. There is little available information about the molecular characterisation and epidemiological prevalence of Cryptosporidium spp. in Microtus fuscus (Qinghai vole) and Ochotona curzoniae (wild plateau pika) in the Qinghai-Tibetan Plateau area of Qinghai Province, Northwest China. Therefore, the aim of this study was to determine Cryptosporidium species/genotypes and epidemiological prevalence in these mammals by detecting the SSU rRNA gene by PCR amplification. The Cryptosporidium spp. infection rate was 8.9% (8/90) in Qinghai voles and 6.25% (4/64) in wild plateau pikas. Positive samples were successfully sequenced, and the following Cryptosporidium species were found: C. parvum, C. ubiquitum, C. canis and a novel genotype in Qinghai voles and C. parvum and a novel genotype in wild plateau pikas. This is the first report of Cryptosporidium infections in M. fuscus and wild O. curzoniae in Northwest China. The results suggest the possibility of Cryptosporidium species transmission among these two hosts, the environment, other animals and humans and provide useful molecular epidemiological data for the prevention and control of Cryptosporidium infections in wild animals and the surrounding environments. The results of the present study indicate the existence of Cryptosporidium species infections that have potential public health significance. This is the first report of Cryptosporidium multi-species infections in these animal hosts.
Assuntos
Arvicolinae/parasitologia , Criptosporidiose/epidemiologia , Criptosporidiose/transmissão , Cryptosporidium/isolamento & purificação , Lagomorpha/parasitologia , Animais , Animais Selvagens/parasitologia , Sequência de Bases , China/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/classificação , Cryptosporidium/genética , DNA Ribossômico/genética , Fezes/parasitologia , Genótipo , Humanos , Reação em Cadeia da Polimerase , Tibet/epidemiologiaRESUMO
The objective of this study was to determine the prevalence of Cryptosporidium species infections in young cattle and sheep in the north-eastern part of the Qinghai-Tibetan Plateau Area (QTPA), north-western China. A total number of 454 faecal samples (389 from cattle and 65 from sheep) were collected and investigated to determine the prevalence of Cryptosporidium spp. oocysts. Cryptosporidium spp. infections detected in cattle (n = 56 positive samples) and sheep (n = 4 positive samples) were as following: C. andersoni (16/56, 28.6%) was the dominant species, followed by C. canis (9/56, 16.1%), C. bovis (9/56, 16.1%), C. hominis (8/56, 14.3%), C. struthionis (7/56, 12.5%), C. ryanae (5/56, 8.9%), and C. serpentis (2/56, 3.6%). Two Cryptosporidium species were detected in sheep: C. parvum (2/4) and C. canis (2/4). There were no mixed infections. C. hominis, C. struthionis, and C. serpentis are reported in domestic animals for the first time at the QTPA of China and our results indicate an anthropozoonotic transmission of C. hominis. The identification of Cryptosporidium spp. in domestic animals warrants better care of the farm animals in order to avoid contamination in vulnerable animal and human populations.
Assuntos
Doenças dos Bovinos/epidemiologia , Criptosporidiose/epidemiologia , Cryptosporidium/isolamento & purificação , Doenças dos Ovinos/epidemiologia , Animais , Animais Domésticos , Bovinos , Doenças dos Bovinos/parasitologia , Criptosporidiose/parasitologia , Cryptosporidium/genética , Fezes/parasitologia , Oocistos , Filogenia , Prevalência , Ovinos , Doenças dos Ovinos/parasitologia , Tibet/epidemiologiaRESUMO
Cryptosporidium and Giardia are ubiquitous parasites that infect humans and animals. Few reports are available on the prevalence of these two protozoan parasites in yaks (Bos grunniens). In this study, 344 faecal samples were collected from yaks with diarrhoea in the Chenduo and Nangqian counties of Qinghai Province, China. Cryptosporidium spp. and Giardia duodenalis were detected by light and immunofluorescence microscopy and nested PCR (nPCR). Fifteen samples were positive (4.5%) by Kinyoun staining, 40 (11.6%) samples were positive by immunofluorescence test (IFT), and 39 (11.3%) samples were positive by nPCR for Cryptosporidium spp., Cryptosporidium bovis (11/39, 28.2%) was the most prevalent species, followed by C. ryanae (6/39, 15.4%), C. andersoni (5/39, 12.8%), C. struthionis (5/39, 12.8%), C. parvum (5/39, 12.8%), C. hominis (4/39, 10.3%) and C. canis (3/39, 7.7%). Thirteen out of 344 (3.8%) samples were positive for Giardia by simple microscopy, 20 (5.8%) by IFT and 18 samples (5.2%) yak faecal samples were Giardia positive by nPCR. Two G. duodenalis assemblages (B, E) were detected in this study. Nine positive samples for G. duodenalis assemblage E were from the towns of Xiewu (8/9, 4.9%) and Xiangda (1/9, 1.3%), and nine positive samples (9/9, 8.5%) for G. duodenalis assemblage B were from the town of Zhenqin. This report provides information about infection with Cryptosporidium species and G. duodenalis assemblages in domesticated 1-2-month-old highland yaks living in the Qinghai-Tibet Plateau region of China.
Assuntos
Criptosporidiose/epidemiologia , Cryptosporidium/classificação , Cryptosporidium/genética , Giardia lamblia/genética , Giardíase/epidemiologia , Animais , Bovinos , China/epidemiologia , Criptosporidiose/parasitologia , Fezes/parasitologia , Giardia lamblia/classificação , Giardíase/parasitologia , Humanos , Reação em Cadeia da Polimerase , Prevalência , Tibet/epidemiologiaRESUMO
Six cystic metacestodes were found in the abdominal muscles of a wild rabbit, Lepus sinensis, in China. The coenurus contained one or more scolices armed with hooklets. Mitochondrial cox1 (1,623 bp) confirmed 98% homology with cox1 of Taenia serialis. This is the first report of T. serialis infection in an intermediate host in the Qinghai Tibetan Plateau Area, China.
Assuntos
Animais Selvagens/parasitologia , Infecções por Cestoides/parasitologia , Infecções por Cestoides/veterinária , Coelhos/parasitologia , Doenças dos Roedores/parasitologia , Taenia/isolamento & purificação , Taenia/patogenicidade , Animais , China , Masculino , Filogenia , Taenia/anatomia & histologia , Taenia/genética , Tibet , Zoonoses/prevenção & controleRESUMO
This study was carried out to determine the pathogen-causing diarrhoea in sheep Ovis aries in the Qinghai Tibetan Plateau Area, China. A trophozoite was identified as species of ciliate alveolates infecting the sheep based on morphological characteristics examined by microscope. It was mostly spherical, colourless and transparent, with many vesicles. Macronucleus and contractile vacuoles could not be distinguished. Size of the trophozoite was 80-180 × 70-150 µm and its surface was covered with cilia. Molecular analysis based on sequences of 18S rRNA and ITS genes confirmed the ciliate species as Balantidium coli. According to the literature, there have been many epidemiological investigations of B. coli infection in pigs, monkeys and humans. To our knowledge, this was the first report of B. coli infections in sheep in the Qinghai Tibetan Plateau Area of China, or eleswhere around the world. Importantly, the sheep case was rare but raised our concern that B. coli may spread across species and expand its host range.
Assuntos
Balantidíase/veterinária , Balantidium/isolamento & purificação , Diarreia/veterinária , Doenças dos Ovinos/parasitologia , Animais , Balantidíase/parasitologia , Balantidium/classificação , Balantidium/citologia , Balantidium/genética , Análise por Conglomerados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Diarreia/parasitologia , Masculino , Microscopia , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Ovinos , Carneiro Doméstico , TibetRESUMO
Background: Cryptosporidium and Giardia are well-known important intestinal zoonotic pathogens that can infect various hosts and cause diarrhoeal diseases. We aimed to determine the epidemiological prevalence and molecular characterization of Cryptosporidium and Giardia species in Himalayan marmot (Marmota himalayana, class Marmota) in the Qinghai Tibetan Plateau Area of Qinghai Province, Northwest China. Methods: Overall, 243 Himalayan marmot fecal samples were collected in 2017 and in 2019 and a two-step nested PCR technique was performed to amplify the fragments of the SSU rRNA gene of Cryptosporidium and 18S ribosomal RNA gene of Giardia. Molecular characterization of Cryptosporidium was performed with the primary primers NDIAGF2 and N-DIAGR2, the secondary primers CPB-DIAGF and CPB-DIAGR. Similarly, molecular characterization of Giardia was used the first primers Gia2029 and Gia2150c, the secondary primers RH11 and RH4. The positive PCR products were sequenced and the sequences were processed by Clustal Omega and BLAST. Phylogenetic analysis was achieved by NJ method in MEGA. Results: The infection rate of Cryptosporidium spp. and G. duodenalis was 4.9% (12/243) and 0.8% (2/243) in M. himalayana, respectively. Cryptosporidium spp. are characterized as novel genotypes Cryptosporidium marmot genotype I (n=3) and Cryptosporidium marmot genotype II (n=9); G. duodenalis assemblage A (n=2) was found in M. himalayana. Conclusion: This is the first report of Cryptosporidium spp. and G. duodenalis infections in M. himalayana in Qinghai of Northwest China. The results indicate the existence of Cryptosporidium species and G. duodenalis infections that may have a potential public health significance.
RESUMO
The northwestern region of China, known as the Qinghai-Tibet Plateau Area (QTPA), is characterized by unique climate conditions that support the breeding of various highly-adapted livestock species. Tick vectors play a significant role in transmitting Babesia and Theileria species, posing serious risks to animal health as well as the economy of animal husbandry in QTPA. A total of 366 blood samples were collected from Tibetan sheep (n = 51), goats (n = 67), yaks (n = 43), cattle (n = 49), Bactrian camels (n = 50), horses (n = 65), and donkeys (n = 40). These samples were examined using conventional and nested PCR techniques to detect Theileria and Babesia species. The overall infection rates were 0.3% (1/366) for Babesia spp. and 38.2% (140/366) for Theileria spp. Notably, neither Babesia nor Theileria species were detected in donkeys and yaks. The infection rates of Babesia and Theileria species among animals in different prefectures were significantly different (p < 0.05). Furthermore, Babesia bovis, B. bigemina, B. caballi, and B. ovis were not detected in the current study. To our knowledge, this is the first documented detection of Theileria luwenshuni infection in Bactrian camels and goats, as well as T. sinesis in cattle and T. equi in horses on the Qinghai plateau. These novel findings shed light on the distribution of Babesia and Theileria species among livestock species in QTPA.
RESUMO
The Qinghai-Tibetan Plateau area (QTPA) features a unique environment that has witnessed the selective breeding of diverse breeds of domestic livestock exhibiting remarkable adaptability. Nevertheless, Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. represent tick-borne bacterial pathogens that pose a global threat and have substantial impacts on both human and animal health, as well as on the economy of animal husbandry within the Qinghai-Tibetan plateau area. In this study, a total of 428 samples were systematically collected from 20 distinct areas within the Qinghai Plateau. The samples included 62 ticks and 366 blood samples obtained from diverse animal species to detect the presence of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. The prevalence of infection in this study was determined as follows: Anaplasma bovis accounted for 16.4% (70/428), A. capra for 4.7% (20/428), A. ovis for 5.8% (25/428), Borrelia burgdorferi sensu lato for 6.3% (27/428), Coxiella burnetii for 0.7% (3/428), and Rickettsia spp. for 0.5% (2/428). Notably, no cases of A. marginale and A. phagocytophilum infections were observed in this study. The findings revealed an elevated presence of these pathogens in Tibetan sheep and goats, with no infections detected in yaks, Bactrian camels, donkeys, and horses. To the best of our knowledge, this study represents the first investigation of tick-borne bacterial pathogens infecting goats, cattle, horses, and donkeys within the Qinghai Plateau of the Qinghai-Tibetan Plateau area. Consequently, our findings contribute valuable insights into the distribution and genetic diversity of Anaplasma spp., Rickettsia spp., Coxiella spp., and Borrelia spp. within China.
RESUMO
Deltacoronavirus, widely distributed among pigs and wild birds, pose a significant risk of cross-species transmission, including potential human epidemics. Metagenomic analysis of bird samples from Qinghai Lake, China in 2021 reported the presence of Deltacoronavirus. A specific gene fragment of Deltacoronavirus was detected in fecal samples from wild birds at a positive rate of 5.94% (6/101). Next-generation sequencing (NGS) identified a novel Deltacoronavirus strain, which was closely related to isolates from the United Arab Emirates (2018), China (2022), and Poland (2023). Subsequently the strain was named A/black-headed gull/Qinghai/2021(BHG-QH-2021) upon confirmation of the Cytochrome b gene of black-headed gull in the sample. All available genome sequences of avian Deltacoronavirus, including the newly identified BHG-QH-2021 and 5 representative strains of porcine Deltacoronavirus (PDCoV), were classified according to ICTV criteria. In contrast to Coronavirus HKU15, which infects both mammals and birds and shows the possibility of cross-species transmission from bird to mammal host, our analysis revealed that BHG-QH-2021 is classified as Putative species 4. Putative species 4 has been reported to infect 5 species of birds but not mammals, suggesting that cross-species transmission of Putative species 4 is more prevalent among birds. Recombination analysis traced BHG-QH-2021 origin to dut148cor1 and MW01_1o strains, with MW01_1o contributing the S gene. Surprisingly, SwissModle prediction showed that the optimal template for receptor-binding domain (RBD) of BHG-QH-2021 is derived from the human coronavirus 229E, a member of the Alphacoronavirus, rather than the anticipated RBD structure of PDCoV of Deltacoronavirus. Further molecular docking analysis revealed that substituting the loop 1-2 segments of HCoV-229E significantly enhanced the binding capability of BHG-QH-2021 with human Aminopeptidase N (hAPN), surpassing its native receptor-binding domain (RBD). Most importantly, this finding was further confirmed by co-immunoprecipitation experiment that loop 1-2 segments of HCoV-229E enable BHG-QH-2021 RBD binding to hAPN, indicating that the loop 1-2 segment of the RBD in Putative species 4 is a probable key determinant for the virus ability to spill over into humans. Our results summarize the phylogenetic relationships among known Deltacoronavirus, reveal an independent putative avian Deltacoronavirus species with inter-continental and inter-species transmission potential, and underscore the importance of continuous surveillance of wildlife Deltacoronavirus.
RESUMO
Enterocytozoon bieneusi is considered to be a microsporidial species of humans and animals in the worldwide. Limited data have been reported on the prevalence and genotypes of E. bieneusi in livestock and wild animals around Qinghai Lake in the Qinghai-Tibetan Plateau area, which shares water sources, grasslands, and harsh climate with high altitudes. In this study, fecal samples from 110 Tibetan sheep, 128 yaks, 227 wild birds, 96 blue sheep (Pseudois nayaur) and 268 Przewalski's gazelle (Procapra przewalskii) around Qinghai Lake were collected, and then tested for E. bieneusi by PCR and sequencing analysis based on the ribosomal internal transcribed spacer. Among them, ten (9.09%) samples from Tibetan sheep, five (3.91%) from yaks, five (2.20%) from wild birds, one (1.04%) from wild blue sheep and two (0.75%) from Przewalski's gazelle were positive for E. bieneusi. Among sheep, there were nine E. bieneusi genotypes, including two known genotypes (BEB6 and J), and seven novel genotypes (named CHS18-CHS24). From yaks, four genotypes were identified, including two known ones (BEB4 and J) and two novel genotypes (named CHN15 and CHN16). While in wild animals, eight genotypes were found, including five different genotypes from wild bids, with three known genotypes (EbpC, J and NCF2), two novel genotypes (named CHWB1 and CHS24), and two genotypes from Przewalski's gazelle, with one known genotype J and one novel genotype CHWPG1, and one novel genotype CHWBS1 from blue sheep. According to the phylogenetic analysis, five isolates belonged to group 1, and the others were clustered into group 2. This study provides unique data on the epidemiological reports and potential risk factors for E. bieneusi in both domesticated livestock and wild animals around Qinghai Lake in the Qinghai-Tibetan Plateau area; it is important to better understand the molecular epidemiology and zoonotic potential of E. bieneusi in the Qinghai-Tibetan Plateau area.
RESUMO
Echinococcosis is a zoonotic disease with great significance to public health, and appropriate detection and control strategies should be adopted to mitigate its impact. Most cases of echinococcosis are believed to be transmitted by the consumption of food and/or water contaminated with canid stool containing Echinococcus spp. eggs. Studies assessing Echinococcus multilocularis, Echinococcus granulosus sensu stricto, and Echinococcus shiquicus coinfection from contaminated water-derived, soil-derived, and food-borne samples are scarce, which may be due to the lack of optimized laboratory detection methods. The present study aimed to develop and evaluate a novel triplex TaqMan-minor groove binder probe for real-time polymerase chain reaction (rtPCR) to simultaneously detect the 3 Echinococcus spp. mentioned above from canid fecal samples in the Qinghai-Tibetan Plateau area (QTPA). The efficiency and linearity of each signal channel in the triplex rtPCR assay were within acceptable limits for the range of concentrations tested. Furthermore, the method was shown to have good repeatability (standard deviation ≤0.32 cycle threshold), and the limit of detection was estimated to be 10 copies plasmid/µl reaction. In summary, the evaluation of the present method shows that the newly developed triplex rtPCR assay is a highly specific, precise, consistent, and stable method that could be used in epidemiological investigations of echinococcosis.
Assuntos
Canidae/parasitologia , Doenças do Cão/parasitologia , Equinococose/veterinária , Echinococcus/isolamento & purificação , Fezes/parasitologia , Reação em Cadeia da Polimerase Multiplex/veterinária , Animais , Biologia Computacional/normas , DNA de Helmintos/isolamento & purificação , Cães , Equinococose/parasitologia , Echinococcus/classificação , Echinococcus/genética , Raposas/parasitologia , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solo/parasitologiaRESUMO
Dogs are popular companions in our daily lives for company, hunting, protection or shepherding, but they also serve as reservoirs for zoonotic parasites. We analysed faecal samples from urban and rural environments in Qinghai Province on the Qinghai-Tibet Plateau of China to determine the prevalence of intestinal parasites. A total of 682 faecal samples were collected from four urban and two rural environments from October 2019 to December 2020. The samples were analysed for common intestinal parasites using a species-specific PCR approach. The total number of samples with parasites was 40 (5.87%): 23 (3.37%) were positive for helminths, and 17 (2.49%) were positive for protozoa. The following parasites were identified, and their respective prevalence rates were calculated: Cryptosporidium canis (1.32%), Giardia duodenalis (1.17%, assemblages D (n = 6) and C (n = 2)), Taenia hydatigena (1.03%), Taenia multiceps (0.59%), Toxocara canis (0.59%), Echinococcus shiquicus (0.29%), Dipylidium caninum (0.29%), Taenia pisiformis (0.15%), Mesocestoides lineatus (0.15%), Trichuris vulpis (0.15%), and Ancylostoma spp. (0.15%). The overall prevalence was significantly higher in dog faecal samples from rural environments than in those from urban environments (16.19% vs. 3.99%). E. shiquicus, T. pisiformis, M. lineatus, T. vulpis, and Ancylostoma spp. were only found in dog faecal samples from rural environments. The results of the present study indicate that intestinal parasite-positive dogs are important sources of environmental contamination, suggesting a significant zoonotic infection risk in humans and other animals. This has implications for the ongoing control of intestinal parasite infections in dogs in Qinghai Province, China.