Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(5): 1377-1391.e14, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545088

RESUMO

Rich fossil evidence suggests that many traits and functions related to terrestrial evolution were present long before the ancestor of lobe- and ray-finned fishes. Here, we present genome sequences of the bichir, paddlefish, bowfin, and alligator gar, covering all major early divergent lineages of ray-finned fishes. Our analyses show that these species exhibit many mosaic genomic features of lobe- and ray-finned fishes. In particular, many regulatory elements for limb development are present in these fishes, supporting the hypothesis that the relevant ancestral regulation networks emerged before the origin of tetrapods. Transcriptome analyses confirm the homology between the lung and swim bladder and reveal the presence of functional lung-related genes in early ray-finned fishes. Furthermore, we functionally validate the essential role of a jawed vertebrate highly conserved element for cardiovascular development. Our results imply the ancestors of jawed vertebrates already had the potential gene networks for cardio-respiratory systems supporting air breathing.


Assuntos
Evolução Biológica , Peixes/genética , Nadadeiras de Animais/fisiologia , Animais , Fenômenos Fisiológicos Cardiovasculares , Sistema Cardiovascular/anatomia & histologia , Extremidades/fisiologia , Peixes/classificação , Genoma , Pulmão/anatomia & histologia , Pulmão/fisiologia , Filogenia , Receptores Odorantes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Vertebrados/classificação , Vertebrados/genética
2.
PLoS Biol ; 21(6): e3002131, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279234

RESUMO

Orcinol glucoside (OG), mainly found in the rhizome of the traditional Chinese herb Curculigo orchioides Gaertn, is noted for its antidepressant effects. In this study, an efficient screening pipeline was established for identifying the highly active orcinol synthase (ORS) and UDP-dependent glycosyltransferase (UGT) involved in the biosynthesis of OG by combining transcriptome analysis, structure-based virtual screening, and in vitro enzyme activity assays. By enhancing the downstream pathway, metabolic engineering and fermentation optimization, the OG production in Yarrowia lipolytica was improved 100-fold, resulting in a final yield of 43.46 g/L (0.84 g/g DCW), which is almost 6,400-fold higher than the extraction yield from C. orchioides roots. This study provides a reference for rapid identification of functional genes and high-yield production of natural products.


Assuntos
Glucosídeos , Yarrowia , Glucosídeos/metabolismo , Yarrowia/genética , Engenharia Metabólica/métodos , Fermentação
3.
PLoS Biol ; 21(9): e3002285, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37733785

RESUMO

The canonical glycolysis pathway is responsible for converting glucose into 2 molecules of acetyl-coenzyme A (acetyl-CoA) through a cascade of 11 biochemical reactions. Here, we have designed and constructed an artificial phosphoketolase (APK) pathway, which consists of only 3 types of biochemical reactions. The core enzyme in this pathway is phosphoketolase, while phosphatase and isomerase act as auxiliary enzymes. The APK pathway has the potential to achieve a 100% carbon yield to acetyl-CoA from any monosaccharide by integrating a one-carbon condensation reaction. We tested the APK pathway in vitro, demonstrating that it could efficiently catabolize typical C1-C6 carbohydrates to acetyl-CoA with yields ranging from 83% to 95%. Furthermore, we engineered Escherichia coli stain capable of growth utilizing APK pathway when glycerol act as a carbon source. This novel catabolic pathway holds promising route for future biomanufacturing and offering a stoichiometric production platform using multiple carbon sources.


Assuntos
Aldeído Liases , Carbono , Acetilcoenzima A , Carbono/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Glucose/metabolismo , Engenharia Metabólica
4.
Anal Chem ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004811

RESUMO

Oligonucleotides represent a class of shorter DNA or RNA nucleic acid polymers extensively applied in the biomedical field. Despite progress in detecting and analyzing oligonucleotides, high-throughput analysis of the samples remains challenging. In this work, a high-throughput analysis method for oligonucleotide analysis was developed based on acoustic droplet ejection-open port interface-mass spectrometry (ADE-OPI-MS) technology. This approach was applied to determine the enzymatic activity of terminal deoxynucleotide transferase (TdT) for DNA synthesis, with a rate of 3 s/sample, which enhanced single-sample analysis efficiency approximately 60-fold over the previous gel analysis. After testing approximately 10,000 TdT mutants, we obtained three new variants with higher catalytic activities. Finally, by integrating these mutants, the catalytic activity of TdT was improved about 4 times compared to the starting mutant. Our results successfully established a high-throughput screening method for oligonucleotide analysis, which not only provides a foundation to engineer highly efficient TdT for ab initio synthesis of DNA but also paves the way for the potential application of oligonucleotide analysis in biomedical fields.

5.
Angew Chem Int Ed Engl ; 62(14): e202218387, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36759346

RESUMO

Enzymatic electrosynthesis has gained more and more interest as an emerging green synthesis platform, particularly for the fixation of CO2 . However, the simultaneous utilization of CO2 and a nitrogenous molecule for the enzymatic electrosynthesis of value-added products has never been reported. In this study, we constructed an in vitro multienzymatic cascade based on the reductive glycine pathway and demonstrated an enzymatic electrocatalytic system that allowed the simultaneous conversion of CO2 and NH3 as the sole carbon and nitrogen sources to synthesize glycine. Through effective coupling and the optimization of electrochemical cofactor regeneration and the multienzymatic cascade reaction, 0.81 mM glycine was yielded with a highest reaction rate of 8.69 mg L-1 h-1 and faradaic efficiency of 96.8 %. These results imply a promising alternative for enzymatic CO2 electroreduction and expand its products to nitrogenous chemicals.


Assuntos
Dióxido de Carbono , Carbono , Glicina , Nitrogênio
6.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672882

RESUMO

The carbon-carbon bond formation has always been one of the most important reactions in C1 resource utilization. Compared to traditional organic synthesis methods, biocatalytic C-C bond formation offers a green and potent alternative for C1 transformation. In recent years, with the development of synthetic biology, more and more carboxylases and C-C ligases have been mined and designed for the C1 transformation in vitro and C1 assimilation in vivo. This article presents an overview of C-C bond formation in biocatalytic C1 resource utilization is first provided. Sets of newly mined and designed carboxylases and ligases capable of catalyzing C-C bond formation for the transformation of CO2, formaldehyde, CO, and formate are then reviewed, and their catalytic mechanisms are discussed. Finally, the current advances and the future perspectives for the development of catalysts for C1 resource utilization are provided.


Assuntos
Dióxido de Carbono/química , Monóxido de Carbono/química , Carbono/química , Técnicas de Química Sintética/métodos , Formaldeído/química , Formiatos/química , Biocatálise , Carboxiliases/metabolismo , Ligases/metabolismo , Biologia Sintética/métodos
7.
J Am Chem Soc ; 141(36): 14451-14459, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31432675

RESUMO

Searching for viable strategies to accelerate the catalytic cycle of glycoside hydrolase family 7 (GH7) cellobiohydrolase I (CBHI)-the workhorse cellulose-degrading enzymes, we have performed a total of 12-µs molecular dynamics simulations on GH7 CBHI, which brought to light a new mechanism for cellobiose expulsion, coined "claw-arm" action. The loop flanking the product binding site plays the role of a flexible "arm" extending toward cellobiose, and residue Thr389 of this loop acts as a "claw" that captures cellobiose. Five mutations of residue Thr389 were considered to enhance the loop-cellobiose interaction. The lysine mutant was found to significantly accelerate cellobiose expulsion and facilitate polysaccharide-chain translocation. Lysine mutation of Thr393 in Talaromyces emersonii CBHI (TeCel7A) performed similarly. Lysine approaches the catalytic area and stabilizes the Michaelis complex, potentially affecting glycosylation, the rate-limiting step of the catalytic cycle. QM/MM calculations indicate that lysine replacement diminishes the barrier against proton transfer, the crucial step of glycosylation, by 2.3 kcal/mol. Experimental validation was performed using the full-length wild-type (WT) of TeCel7A and its mutants, recombinantly expressed in Pichia pastoris, to degrade the substrates. Compared with the WT, the lysine mutant revealed an associated higher enzymatic reaction rate. Furthermore, cellobiose yield was also increased by lysine mutation, indicating that dissociation of the enzyme from cellulose was accelerated, which largely stems from the enhanced flexibility of the "arm". The present work is envisioned to help design strategies for improving enzymatic activity, while decreasing enzyme cost.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Lisina/metabolismo , Biocatálise , Celulose 1,4-beta-Celobiosidase/química , Lisina/química , Lisina/genética , Simulação de Dinâmica Molecular , Mutação , Talaromyces/enzimologia
8.
Metab Eng ; 56: 142-153, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31491544

RESUMO

The utilization of one-carbon (C1) assimilation pathways to produce chemicals and fuels from low-cost C1 compounds could greatly reduce the substrate-related production costs, and would also alleviate the pressure of the resource supply for bio-manufacturing. However, the natural C1 assimilation pathways normally involve ATP consumption or the loss of carbon resources as CO2, resulting in low product yields, making the design of novel pathways highly pertinent. Here we present several new ATP-independent and carbon-conserving C1 assimilation cycles with 100% theoretical carbon yield, which were discovered by computational analysis of metabolic reaction set with 6578 natural reactions from MetaCyc database and 73 computationally predicted aldolase reactions from ATLAS database. Then, kinetic evaluation of these cycles was conducted and the cycles without kinetic traps were chosen for further experimental verification. Finally, we used the two engineered enzymes Gals and TalBF178Y for the artificial reactions to construct a novel C1 assimilation pathway in vitro and optimized the pathway to achieve 88% carbon yield. These results demonstrate the usefulness of computational design in finding novel metabolic pathways for the efficient utilization of C1 compounds and shedding light on other promising pathways.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Bases de Dados Factuais , Redes e Vias Metabólicas , Modelos Biológicos , Engenharia Metabólica
9.
Mol Biol Evol ; 34(11): 2870-2878, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961859

RESUMO

Parallel evolution occurs when a similar trait emerges in independent evolutionary lineages. Although changes in protein coding and gene transcription have been investigated as underlying mechanisms for parallel evolution, parallel changes in chromatin structure have never been reported. Here, Saccharomyces cerevisiae and a distantly related yeast species, Dekkera bruxellensis, are investigated because both species have independently evolved the capacity of aerobic fermentation. By profiling and comparing genome sequences, transcriptomic landscapes, and chromatin structures, we revealed that parallel changes in nucleosome occupancy in the promoter regions of mitochondria-localized genes led to concerted suppression of mitochondrial functions by glucose, which can explain the metabolic convergence in these two independent yeast species. Further investigation indicated that similar mutational processes in the promoter regions of these genes in the two independent evolutionary lineages underlay the parallel changes in chromatin structure. Our results indicate that, despite several hundred million years of separation, parallel changes in chromatin structure, can be an important adaptation mechanism for different organisms. Due to the important role of chromatin structure changes in regulating gene expression and organism phenotypes, the novel mechanism revealed in this study could be a general phenomenon contributing to parallel adaptation in nature.


Assuntos
Aerobiose/genética , Cromatina/genética , Aerobiose/fisiologia , Anaerobiose/genética , Evolução Biológica , Cromatina/fisiologia , Dekkera/genética , Dekkera/metabolismo , Evolução Molecular , Fermentação/genética , Expressão Gênica/genética , Glucose/metabolismo , Filogenia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Microb Cell Fact ; 16(1): 125, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724386

RESUMO

Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.


Assuntos
Bactérias/metabolismo , Produtos Biológicos , Engenharia Celular , Fungos/metabolismo , Microbiologia Industrial , Preparações de Plantas/isolamento & purificação , Bactérias/genética , Vias Biossintéticas , Suplementos Nutricionais , Fermentação , Fungos/genética , Engenharia Metabólica , Preparações de Plantas/química , Preparações de Plantas/metabolismo , Preparações de Plantas/uso terapêutico , Biologia Sintética
11.
Microb Cell Fact ; 16(1): 165, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28950867

RESUMO

BACKGROUND: Kaempferol is a flavonol with broad bioactivity of anti-oxidant, anti-cancer, anti-diabetic, anti-microbial, cardio-protective and anti-asthma. Microbial synthesis of kaempferol is a promising strategy because of the low content in primary plant source. METHODS: In this study, the biosynthesis pathway of kaempferol was constructed in the budding yeast Saccharomyces cerevisiae to produce kaempferol de novo, and several biological measures were taken for high production. RESULTS: Firstly, a high efficient flavonol synthases (FLS) from Populus deltoides was introduced into the biosynthetic pathway of kaempferol. Secondly, a S. cerevisiae recombinant was constructed for de novo synthesis of kaempferol, which generated about 6.97 mg/L kaempferol from glucose. To further promote kaempferol production, the acetyl-CoA biosynthetic pathway was overexpressed and p-coumarate was supplied as substrate, which improved kaempferol titer by about 23 and 120%, respectively. Finally, a fed-batch process was developed for better kaempferol fermentation performance, and the production reached 66.29 mg/L in 40 h. CONCLUSIONS: The titer of kaempferol in our engineered yeast is 2.5 times of the highest reported titer. Our study provides a possible strategy to produce kaempferol using microbial cell factory.


Assuntos
Quempferóis/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Fermentação , Glucose/metabolismo , Engenharia Metabólica
12.
Proc Natl Acad Sci U S A ; 110(29): 11928-33, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23812753

RESUMO

Bacteriophage lambda is one of the most extensively studied organisms and has been a primary model for understanding basic modes of genetic regulation. Here, we examine the progress of lambda gene expression during phage development by ribosome profiling and, thereby, provide a very-high-resolution view of lambda gene expression. The known genes are expressed in a predictable fashion, authenticating the analysis. However, many previously unappreciated potential open reading frames become apparent in the expression analysis, revealing an unexpected complexity in the pattern of lambda gene function.


Assuntos
Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Mutação da Fase de Leitura/genética , RNA Mensageiro/genética
13.
BMC Microbiol ; 14: 11, 2014 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-24438106

RESUMO

BACKGROUND: Gene gain and loss frequently occurs in the cyanobacterium Prochlorococcus, a phototroph that numerically dominates tropical and subtropical open oceans. However, little is known about the stabilization of its core genome, which contains approximately 1250 genes, in the context of genome streamlining. Using Prochlorococcus MED4 as a model organism, we investigated the constraints on core genome stabilization using transcriptome profiling. RESULTS: RNA-Seq technique was used to obtain the transcriptome map of Prochlorococcus MED4, including operons, untranslated regions, non-coding RNAs, and novel genes. Genome-wide expression profiles revealed that three factors contribute to core genome stabilization. First, a negative correlation between gene expression levels and protein evolutionary rates was observed. Highly expressed genes were overrepresented in the core genome but not in the flexible genome. Gene necessity was determined as a second powerful constraint on genome evolution through functional enrichment analysis. Third, quick mRNA turnover may increase corresponding proteins' fidelity among genes that were abundantly expressed. Together, these factors influence core genome stabilization during MED4 genome evolution. CONCLUSIONS: Gene expression, gene necessity, and mRNA turnover contribute to core genome maintenance during cyanobacterium Prochlorococcus genus evolution.


Assuntos
Genoma Bacteriano , Instabilidade Genômica , Prochlorococcus/genética , Transcriptoma , Evolução Molecular , Expressão Gênica , Estabilidade de RNA
14.
Int J Biol Macromol ; 275(Pt 2): 133755, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986995

RESUMO

Bacterial cellulose (BC) is an extracellular polysaccharide with myriad unique properties, such as high purity, water-holding capacity and biocompatibility, making it attractive in materials science. However, genetic engineering techniques for BC-producing microorganisms are rare. Herein, the electroporation-based gene transformation and the λ Red-mediated gene knockout method with a nearly 100 % recombination efficiency were established in the fast-growing and BC hyperproducer Enterobacter sp. FY-07. This genetic manipulation toolkit was validated by inactivating the protein subunit BcsA in the cellulose synthase complex. Subsequently, the inducible BC-producing strains from glycerol were constructed through inducible expression of the key gene fbp in the gluconeogenesis pathway, which recovered >80 % of the BC production. Finally, the BC properties analysis results indicated that the induced-synthesized BC pellicles were looser, more porous and reduced crystallinity, which could further broaden the application prospects of BC. To our best knowledge, this is the first attempt to construct the completely inducible BC-producing strains. Our work paves the way for increasing BC productivity by metabolic engineering and broadens the available fabrication methods for BC-based advanced functional materials.

15.
Front Microbiol ; 15: 1413120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966388

RESUMO

While poly (3-hydroxybutyrate) (PHB) holds promise as a bioplastic, its commercial utilization has been hampered by the high cost of raw materials. However, glycerol emerges as a viable feedstock for PHB production, offering a sustainable production approach and substantial cost reduction potential. Glycerol stands out as a promising feedstock for PHB production, offering a pathway toward sustainable manufacturing and considerable cost savings. The identification and characterization of strains capable of converting glycerol into PHB represent a pivotal strategy in advancing PHB production research. In this study, we isolated a strain, Ralstonia sp. RRA (RRA). The strain exhibits remarkable proficiency in synthesizing PHB from glycerol. With glycerol as the carbon source, RRA achieved a specific growth rate of 0.19 h-1, attaining a PHB content of approximately 50% within 30 h. Through third-generation genome and transcriptome sequencing, we elucidated the genome composition and identified a total of eight genes (glpR, glpD, glpS, glpT, glpP, glpQ, glpV, and glpK) involved in the glycerol metabolism pathway. Leveraging these findings, the strain RRA demonstrates significant promise in producing PHB from low-cost renewable carbon sources.

16.
Synth Syst Biotechnol ; 9(4): 694-700, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38868609

RESUMO

Taxanes are kinds of diterpenoids with important bioactivities, such as paclitaxel (taxol®) is an excellent natural broad-spectrum anticancer drug. Attempts to biosynthesize taxanes have made with limited success, mainly due to the bottleneck of the low efficiency catalytic elements. In this study, we developed an artificial synthetic system to produce taxanes from mevalonate (MVA) by coupling biological and chemical methods, which comprises in vitro multi-enzyme catalytic module, chemical catalytic module and yeast cell catalytic module. Through optimizing in vitro multienzyme catalytic system, the yield of taxadiene was increased to 946.7 mg/L from MVA within 8 h and the productivity was 14.2-fold higher than microbial fermentation. By incorporating palladium catalysis, the conversion rate of Taxa-4(20),11(12)-dien-5α-yl acetate (T5α-AC) reached 48 %, effectively addressing the product promiscuity and the low yield rate of T5αOH. Finally, we optimized the expression of T10ßOH in yeast resulting in the biosynthesis of Taxa-4(20),11(12)-dien-5α-acetoxy-10ß-ol(T5α-AC-10ß-ol) at a production of 15.8 mg/L, which displayed more than 2000-fold higher than that produced by co-culture fermentation strategy. These technologies offered a promising new approach for efficient synthesis of taxanes.

17.
Synth Syst Biotechnol ; 9(1): 11-18, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38173809

RESUMO

Monoterpenoids are typically present in the secretory tissues of higher plants, and their biosynthesis is catalyzed by the action of monoterpene synthases (MTSs). However, the knowledge about these enzymes is restricted in a few plant species. MTSs are responsible for the complex cyclization of monoterpene precursors, resulting in the production of diverse monoterpene products. These enzymatic reactions are considered exceptionally complex in nature. Therefore, it is crucial to understand the catalytic mechanism of MTSs to elucidate their ability to produce diverse or specific monoterpenoid products. In our study, we analyzed thirteen genomes of Dipterocarpaceae and identified 38 MTSs that generate a variety of monoterpene products. By focusing on four MTSs with different product spectra and analyzing the formation mechanism of acyclic, monocyclic and bicyclic products in MTSs, we observed that even a single amino acid mutation can change the specificity and diversity of MTS products, which is due to the synergistic effect between the shape of the active cavity and the stabilization of carbon-positive intermediates that the mutation changing. Notably, residues N340, I448, and phosphoric acid groups were found to be significant contributors to the stabilization of intermediate terpinyl and pinene cations. Alterations in these residues, either directly or indirectly, can impact the synthesis of single monoterpenes or their mixtures. By revealing the role of key residues in the catalytic process and establishing the interaction model between specific residues and complex monoterpenes in MTSs, it will be possible to reasonably design and engineer different catalytic activities into existing MTSs, laying a foundation for the artificial design and industrial application of MTSs.

18.
Biodes Res ; 6: 0031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572349

RESUMO

Protein engineering aimed at increasing temperature tolerance through iterative mutagenesis and high-throughput screening is often labor-intensive. Here, we developed a deep evolution (DeepEvo) strategy to engineer protein high-temperature tolerance by generating and selecting functional sequences using deep learning models. Drawing inspiration from the concept of evolution, we constructed a high-temperature tolerance selector based on a protein language model, acting as selective pressure in the high-dimensional latent spaces of protein sequences to enrich those with high-temperature tolerance. Simultaneously, we developed a variant generator using a generative adversarial network to produce protein sequence variants containing the desired function. Afterward, the iterative process involving the generator and selector was executed to accumulate high-temperature tolerance traits. We experimentally tested this approach on the model protein glyceraldehyde 3-phosphate dehydrogenase, obtaining 8 variants with high-temperature tolerance from just 30 generated sequences, achieving a success rate of over 26%, demonstrating the high efficiency of DeepEvo in engineering protein high-temperature tolerance.

19.
Research (Wash D C) ; 7: 0413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979516

RESUMO

Although cytochrome P450 enzymes are the most versatile biocatalysts in nature, there is insufficient comprehension of the molecular mechanism underlying their functional innovation process. Here, by combining ancestral sequence reconstruction, reverse mutation assay, and progressive forward accumulation, we identified 5 founder residues in the catalytic pocket of flavone 6-hydroxylase (F6H) and proposed a "3-point fixation" model to elucidate the functional innovation mechanisms of P450s in nature. According to this design principle of catalytic pocket, we further developed a de novo diffusion model (P450Diffusion) to generate artificial P450s. Ultimately, among the 17 non-natural P450s we generated, 10 designs exhibited significant F6H activity and 6 exhibited a 1.3- to 3.5-fold increase in catalytic capacity compared to the natural CYP706X1. This work not only explores the design principle of catalytic pockets of P450s, but also provides an insight into the artificial design of P450 enzymes with desired functions.

20.
Mol Biol Evol ; 29(9): 2169-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22438588

RESUMO

It has been increasingly clear that changes in gene regulation play important roles in physiological and phenotypic evolution. Rewiring gene-regulatory networks, i.e., alteration of the gene-regulation system for different biological functions, has been demonstrated in various species. Posttranscriptional regulons have prominent roles in coordinating gene expression in a variety of eukaryotes. In this study, using Puf4p in fungi as an example, we demonstrate that posttranscriptional regulatory networks can also be rewired during evolution. Although Puf4p is highly conserved in fungi, targets of the posttranscriptional regulon are functionally diverse among known fungal species. In the Saccharomycotina subdivision, target genes of Puf4p mostly conduct function in the nucleolus; however, in the Pezizomycotina subdivision, they are enriched in the mitochondria. Furthermore, we demonstrate different regulation efficiencies of mitochondrial function by PUF proteins in different fungal clades. Our results indicate that rewiring of posttranscription regulatory networks may be an important way of generating genetic novelties in gene regulation during evolution.


Assuntos
Fungos/genética , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Processamento Pós-Transcricional do RNA , RNA Fúngico , Sequência de Aminoácidos , Análise por Conglomerados , Genes Mitocondriais , Dados de Sequência Molecular , Filogenia , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA