Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Biotechnol J ; 21(6): 1140-1158, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36752420

RESUMO

Flavonoids have a major contribution to the fruit quality in cultivated strawberries and are regulated by MYB, bHLH and WD40 transcriptional factors. We reported here the identification of the FaMYB5, an R2R3-MYB transcription factor, which positively regulated the accumulation of anthocyanins and proanthocyanidins through the trans-activation of the F3'H and LAR. The strawberry FaEGL3 and FaLWD1/FaLWD1-like interact with the R2R3-FaMYB5 to form an MYB-bHLH-WD40 complex (MBW), enhancing the regulatory efficiency. The R2R3-FaMYB5 was constitutively expressed in various tissues and in fruits of different developmental stages, which was strikingly contrasting to the fruit-specific expression patterns of FaMYB10. Meanwhile, R2R3-FaMYB5 failed to promote a stable accumulation of anthocyanin glycosides in the mature fruits of the myb10 mutant, mainly due to the suppressed expression of TT19. The R2R3-FaMYB5 was regulated by an antisense long noncoding RNA lncRNA-myb5. Additionally, the R2R3-FaMYB5 protein could interact with FaBT2 and was degraded through the ubiquitin/26 S proteasome pathway. Transcriptome and metabolome data showed that R2R3-FaMYB5 enhanced the gene expression and the metabolite accumulation involved in the flavonoid, phenylpropanoid and lignin biosynthesis pathways. Collectively, we conclude that the FaMYB5 is an R2R3-MYB activator involved in the composition of MBW, which positively regulates the biosynthesis of anthocyanin and proanthocyanidin. These findings provided new insights into the molecular mechanisms that regulate flavonoids in strawberry fruits.


Assuntos
Fragaria , Proantocianidinas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Flavonoides/metabolismo , Frutas/genética , Frutas/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569565

RESUMO

MYB and BBX transcription factors play important roles in flavonoid biosynthesis. Here, we obtained transgenic woodland strawberry with stable overexpression of FaMYB5, demonstrating that FaMYB5 can increase anthocyanin and proanthocyanidin content in roots, stems and leaves of woodland strawberry. In addition, bimolecular fluorescence complementation assays and yeast two-hybridization demonstrated that the N-terminal (1-99aa) of FaBBX24 interacts with FaMYB5. Transient co-expression of FaBBX24 and FaMYB5 in cultivated strawberry 'Xiaobai' showed that co-expression strongly promoted the expression of F3'H, 4CL-2, TT12, AHA10 and ANR and then increased the content of anthocyanin and proanthocyanidin in strawberry fruits. We also determined that FaBBX24 is also a positive regulator of anthocyanin and proanthocyanidin biosynthesis in strawberry. The results reveal a novel mechanism by which the FaMYB5-FaBBX24 module collaboratively regulates anthocyanin and proanthocyanidin in strawberry fruit.

3.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982763

RESUMO

The regulation of detached ripening is significant for prolonging fruit shelf life. Although light quality and sucrose affecting strawberry fruit ripening have been widely reported, little information is available about how they co-regulate the strawberry detached ripening process. In this study, different light qualities (red light-RL, blue light-BL, and white light-WL) and 100 mM sucrose were applied to regulate the ripening of initial red fruits detached from the plant. The results showed RL-treated samples (RL + H2O, RL + 100 mM sucrose) had brighter and purer skin color with a higher L*, b*, and C* value, and promoted the ascorbic acid. Almost all light treatments significantly decreased TSS/TA (total soluble solid/titratable acid) and soluble sugar/TA ratio, which is exacerbated by the addition of sucrose. Blue or red light in combination with sucrose notably increased total phenolic content and decreased malondialdehyde (MDA) accumulation. In addition, blue or red light combined with sucrose increased abscisic acid (ABA) content and promoted ABA signaling by inducing ABA-INSENSITIVE 4 (ABI4) expression and inhibiting SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE 2.6 (SnRK2.6) expression. The strawberries exposed to blue and red light significantly improved auxin (IAA) content compared to the control (0 d), whereas the addition of sucrose inhibited IAA accumulation. Moreover, sucrose treatment suppressed the AUXIN/INDOLE-3-ACETIC ACID 11 (AUX/IAA11) and AUXIN RESPONSE FACTOR 6 (ARF6) expression under different light qualities. Overall, these results indicated that RL/BL + 100 mM sucrose might promote the detached ripening of strawberries by regulating abscisic acid and auxin signaling.


Assuntos
Ácido Abscísico , Fragaria , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Fragaria/metabolismo , Sacarose/farmacologia , Sacarose/metabolismo , Proteínas de Plantas/genética , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806380

RESUMO

Anthocyanin content is important for both the external and internal fruit quality of cultivated strawberries, but the mechanism of its accumulation in pinkish-skinned and white-fleshed strawberries is puzzling. Here, we found that the factor determining variation in the flesh color was not the FaMYB10 but the FaC4H in the cultivated strawberry Benihoppe and its white-fleshed mutant Xiaobai. Compared with Benihoppe, there was no significant difference in the coding sequence and expression level of FaMYB10 in Xiaobai's flesh. Instead, the transcription of FaC4H was dramatically inhibited. The combined analyses of transcriptomics and metabolomics showed that the differential genes and metabolites were significantly enriched in the phenylpropanoid biosynthesis pathway. Furthermore, the transient overexpression of FaC4H greatly restored anthocyanins' accumulation in Xiaobai's flesh and did not produce additional pigment species, as in Benihoppe. The transcriptional repression of FaC4H was not directly caused by promoter methylations, lncRNAs, or microRNAs. In addition, the unexpressed FaF3'H, which resulted in the loss of cyanidin 3-O-glucoside in the flesh, was not due to methylation in promoters. Our findings suggested that the repression of FaC4H was responsible for the natural formation of pinkish-skinned and white-fleshed strawberries.


Assuntos
Fragaria , Antocianinas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887106

RESUMO

B-box transcription factors (TFs) play a vital role in light-induced anthocyanin accumulation. Here, the FaBBX22 gene encoding 287 amino acids B-box TF was isolated from the cultivated strawberry variety 'Benihoppe' and characterized functionally. The expression analysis showed that FaBBX22 was expressed in the roots, stems, leaves, flowers and fruits, and its transcription level was upregulated under the red- or blue-light irradiation. FaBBX22 was localized in the nucleus and showed trans-acting activity in yeast cells. Ectopic overexpression of FaBBX22 in Arabidopsis enhanced the accumulation of anthocyanin. Additionally, we obtained transgenic strawberry calli that overexpressed the FaBBX22 gene, and strawberry calli coloration assays showed that FaBBX22 increased anthocyanin accumulation by upregulating the expression of anthocyanin biosynthetic genes (FaPAL, FaANS, FaF3'H, FaUFGT1) and transport gene FaRAP in a light-dependent manner. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays indicated that FaBBX22 interacted with FaHY5. Furthermore, mutation of the 70th Asp residue in FaBBX22 protein to an Ala residue disrupted the interaction between FaBBX22 and FaHY5. Further, a transient expression assay demonstrated that the co-expression of FaBBX22 and FaHY5 could strongly promote anthocyanin accumulation in strawberry fruits. Collectively, these results revealed the positive regulatory role of FaBBX22 in light-induced anthocyanin accumulation.


Assuntos
Fragaria , Antocianinas/metabolismo , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293343

RESUMO

WRKY transcription factors play a nonnegligible role in plant growth and development, but little is known about the involvement of WRKY transcription factors in the regulation of fruit ripening. In this study, FaWRKY71 was identified to be closely related to fruit maturation in octoploid strawberry. FaWRKY71 protein localized in the nucleus and responded to cold, salt, low phosphate, ABA, and light quality in strawberry seedlings. The temporal and spatial pattern expression analysis indicated that FaWRKY71 was expressed in all the detected tissues, especially in the full red fruits. In addition, FaWRKY71 gave rise to the accumulation of anthocyanin content by promoting the expression of structural genes FaF3'H, FaLAR, FaANR, and transport factors FaTT19 and FaTT12 in the flavonoid pathway, and softening the texture of strawberry via up-regulating the abundance of FaPG19 and FaPG21. Furthermore, FaWRKY71 was a positive regulator that mediated resistance against reactive oxygen species by enhancing the enzyme activities of SOD, POD, and CAT, reducing the amount of MDA. Altogether, this study provides new and comprehensive insight into the regulatory mechanisms facilitating fruit ripening in strawberry.


Assuntos
Fragaria , Fragaria/metabolismo , Frutas/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flavonoides/metabolismo , Fosfatos/metabolismo , Superóxido Dismutase/metabolismo
7.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361867

RESUMO

C2H2-type zinc finger proteins (C2H2-ZFPs) play a key role in various plant biological processes and responses to environmental stresses. In Arabidopsisthaliana, C2H2-ZFP members with two zinc finger domains have been well-characterized in response to abiotic stresses. To date, the functions of these genes in strawberries are still uncharacterized. Here, 126 C2H2-ZFPs in cultivated strawberry were firstly identified using the recently sequenced Fragaria × ananassa genome. Among these C2H2-ZFPs, 46 members containing two zinc finger domains in cultivated strawberry were further identified as the C1-2i subclass. These genes were unevenly distributed on 21 chromosomes and classified into five groups according to the phylogenetic relationship, with similar physicochemical properties and motif compositions in the same group. Analyses of conserved domains and gene structures indicated the evolutionary conservation of the C1-2i subclass. A Ka/Ks analysis indicated that the C1-2i members were subjected to purifying selection during evolution. Furthermore, FaZAT10, a typical C2H2-ZFP, was isolated. FaZAT10 was expressed the highest in roots, and it was induced by drought, salt, low-temperature, ABA, and MeJA treatments. It was localized in the nucleus and showed no transactivation activity in yeast cells. Overall, these results provide useful information for enriching the analysis of the ZFPs gene family in strawberry, and they provide support for revealing the mechanism of FaZAT10 in the regulatory network of abiotic stress.


Assuntos
Fragaria , Fragaria/genética , Fragaria/metabolismo , Filogenia , Estresse Fisiológico/genética , Secas , Dedos de Zinco/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
8.
Mol Genet Genomics ; 295(2): 421-438, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31807909

RESUMO

Abscisic acid (ABA) and sucrose play an important role in strawberry fruit ripening, but how ABA and sucrose co-regulate this ripening progress remains unclear. The intention of this study was to examine the effect of ABA and sucrose on strawberry fruit ripening and to evaluate the ABA/sucrose interaction mechanism on the strawberry fruit ripening process. Here, we report that there is an acute synergistic effect between ABA and sucrose in accelerating strawberry fruit ripening. The time frame of fruit development and ripening was shortened after the application of ABA, sucrose, and ABA + sucrose, but most of the major quality parameters in treated-ripe fruit, including fruit weight, total soluble solids, anthocyanin, ascorbic acid, the total phenolic content, lightness (L*), chroma (C*), and hue angle (h°) values were not affected. Meanwhile, the endogenous ABA and sucrose levels, and the expression of ABA and sucrose signaling genes and ripening-related genes, such as NCED1, NCED2, SnRK2.2, SuSy, MYB5, CEL1, and CEL2, was all significantly enhanced by ABA or sucrose treatment alone, but in particular, by the ABA + sucrose treatment. Therefore, improving the ripening regulation efficiency is one synergetic action of ABA/sucrose. Another synergetic action of ABA/sucrose shows that a short inhibition of glycolysis occurs during accelerated strawberry ripening. ABA and sucrose can induce higher accumulation of H2O2, leading to a transient decrease in glycolysis. Conversely, lower endogenous H2O2 levels caused by reduced glutathione (GSH) treatment resulted in a transient increase in glycolysis while delaying strawberry fruit ripening. Collectively, this study demonstrates that the ABA/sucrose interaction affects the ripening regulation efficiency and shows inhibition of glycolysis.


Assuntos
Ácido Abscísico/metabolismo , Fragaria/genética , Frutas/genética , Sacarose/metabolismo , Antocianinas/metabolismo , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Glicólise/genética , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais/genética
9.
Plant Cell Physiol ; 59(9): 1844-1859, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800352

RESUMO

Anthocyanins are water-soluble pigments in plants. They confer both economic and healthy profits for humans. To gain a deeper insight into the regulation of anthocyanin biosynthesis in octoploid strawberry (Fragaria�ananassa; Fa), a widely consumed economically important fruit, we performed comparative transcriptomic analysis of red- and white-fleshed strawberry cultivars in two ripening stages. In total, 365,455 non-redundant transcripts were assembled from the RNA sequencing (RNAseq) data. Of this collection, 377 were annotated as putative anthocyanin-related transcripts. Differential expression analysis revealed that 57 anthocyanin biosynthesis transcripts were down-regulated, and 89 transcription factors (TFs) were either down- or up-regulated under anthocyanin deficiency. Additionally, amongst the 50,601 putative long non-coding RNAs (lncRNAs) identified here, 68 lncRNAs were differentially expressed and co-expressed with differentially expressed anthocyanin-related mRNAs; 2,070 co-expressing lncRNA-mRNA pairs were generated. Expression profile analysis revealed that it was the limited expression of FaF3'H (flavonoid 3'-hydroxylase) that blocked the cyanidin 3-glucoside accumulation in the two investigated strawberry cultivars. This was further supported by a transient overexpression experiment with FaMYB10. The down-regulated lncRNAs might participate in anthocyanin regulation by acting as targets for microRNAs (miRNAs). The level of competitive intensity in miRNA and lncRNA for the same mRNA targets was probably lower in the white-fleshed strawberries, which can release the repression effect of the mRNAs in red-fleshed strawberry as a result. This study for the first time presents lncRNAs related to anthocyanins in strawberries, provides new insights into the anthocyanin regulatory network and also lays the foundation for identifying new anthocyanin regulators in strawberry.


Assuntos
Antocianinas/biossíntese , Fragaria/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Antocianinas/genética , Redes Reguladoras de Genes , Hibridização Genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Transcriptoma
10.
Molecules ; 23(4)2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614032

RESUMO

Light conditions can cause quantitative and qualitative changes in anthocyanin. However, little is known about the underlying mechanism of light quality-regulated anthocyanin accumulation in fruits. In this study, light-emitting diodes (LEDs) were applied to explore the effect of red and blue light on strawberry coloration. The results showed contents of total anthocyanins (TA), pelargonidin 3-glucoside (Pg3G) and pelargonidin 3-malonylglucoside (Pg3MG) significantly increased after blue and red light treatment. Pg3G was the major anthocyanin component in strawberry fruits, accounting for more than 80% of TA, whereas Pg3MG accounted for a smaller proportion. Comparative transcriptome analysis was conducted using libraries from the treated strawberries. A total of 1402, 5034, and 3764 differentially-expressed genes (DEGs) were identified in three pairwise comparisons (red light versus white light, RL-VS-WL; blue light versus white light, BL-VS-WL; blue light versus red light, BL-VS-RL), respectively. Photoreceptors and light transduction components remained dynamic to up-regulate the expression of regulatory factors and structural genes related to anthocyanin biosynthesis under red and white light, whereas most genes had low expression levels that were not consistent with the highest total anthocyanin content under blue light. Therefore, the results indicated that light was an essential environmental factor for anthocyanin biosynthesis before the anthocyanin concentration reached saturation in strawberry fruits, and blue light could quickly stimulate the accumulation of anthocyanin in the fruit. In addition, red light might contribute to the synthesis of proanthocyanidins by inducing LAR and ANR.


Assuntos
Antocianinas/metabolismo , Fragaria/metabolismo , Fragaria/efeitos da radiação , Luz , Frutas/efeitos dos fármacos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos da radiação
11.
Int J Biol Macromol ; 281(Pt 2): 136445, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39389512

RESUMO

Matricaria recutita is widely used in industry and as a medicinal plant because it contains α-bisabolol. Alpha-bisabolol has broad application prospects due to its healthy function and medical value. The activity of the α-bisabolol synthase (MrBAS) promoter determines the expression of the MrBAS gene, which in turn influences the synthesis and accumulation of α-bisabolol. However, the activity and tissue specificity of the MrBAS promoter have not yet been characterized. In this study, a 1327-base pair (bp) region upstream of the MrBAS of the translation start site was cloned from the genome of M. recutita. MrBAS promoter sequence analysis revealed multiple light-responsive elements, and further dark treatment reduced α-bisabolol content in flowers. The α-bisabolol content and MrBAS expression levels in various flower tissues showed a strong correlation. The 5' deletion analysis revealed that the MrBAS promoter sequence could drive ß-glucuronidase (GUS) gene expression in Nicotiana benthamiana leaves, with activity decreasing as the fragment shortened. Transgenic experiments demonstrated that the MrBAS promoter could specifically drive GUS gene expression in Arabidopsis anthers, pollen tubes, and petals. Thus, the MrBAS promoter has the potential to be a tool for directing transgene expression specifically in flower organs, offering new research avenues for cultivar development.

12.
Front Plant Sci ; 14: 1145670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993840

RESUMO

Anthocyanins endowing strawberry fruit red color are regulated by the MYB-bHLH-WD40 complex. By analyzing the MYBs involved in the flavonoid biosynthesis in strawberry, we found that R2R3-FaMYB5 promoted the content of anthocyanin and proanthocyanidins in strawberry fruits. Yeast two-hybrid and BiFC assays confirmed that MBW complexes connected with flavonoid metabolism were FaMYB5/FaMYB10-FaEGL3 (bHLH)-FaLWD1/FaLWD1-like (WD40). Transient overexpression and qRT-PCR analysis revealed that disparate MBW models hold different patterns in the regulation of flavonoid biosynthesis in strawberry fruits. Compared with FaMYB10, FaMYB5 and its dominant complexes showed a more specific regulatory range on strawberry flavonoid biosynthetic pathway, while FaMYB10 was more extensive. In addition, the complexes involved in FaMYB5 facilitated PAs accumulation primarily through the LAR tributary while FaMYB10 mainly by the ANR branch. FaMYB9 and FaMYB11 tremendously elicited the accumulation of proanthocyanidins by up-regulating the expression levels of both LAR and ANR, and also affected anthocyanin metabolism by changing the ratio of Cy3G and Pg3G which were constituted as two major anthocyanin monomers in strawberries. Our study also illustrated that FaMYB5-FaEGL3-FaLWD1-like directly targeted the promoters of F3'H, LAR, and AHA10 thus committing to flavonoid accumulation. These results allow the specific members involved in the MBW complex to be deciphered and provide new insights into the regulatory mechanisms of anthocyanins and proanthocyanidins regulated by the MBW complex.

13.
Front Plant Sci ; 14: 1171056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035055

RESUMO

The plant U-box (PUB) proteins are a type of E3 ubiquitin ligases well known for their functions in response to various stresses. They are also related to fruit development and ripening. However, PUB members possess such roles that remain unclear in strawberry. In this study, 155 PUB genes were identified in octoploid strawberry and classified into four groups. Their promoters possessed a variety of cis-acting elements, most of which are associated with abiotic stresses, followed by phytohormones response and development. Protein-protein interaction analysis suggested that FaU-box members could interact with each other as well as other proteins involved in hormone signaling and stress resistance. Transcriptome-based and RT-qPCR expression analysis revealed the potential involvement of FaU-box genes in resistance to stresses and fruit ripening. Of these, FaU-box98 and FaU-box136 were positively while FaU-box52 was negatively related to strawberry ripening. FaU-box98 comprehensively participated in resistance of ABA, cold, and salt, while FaU-box83 and FaU-box136 were broadly associated with drought and salt stresses. FaU-box18 and FaU-box52 were ABA-specific; FaU-box3 was specific to salt stress. In addition, the functional analysis of a randomly selected FaU-box (FaU-box127) showed that the transient overexpression of FaU-box127 promoted the ripening of strawberry fruit, along with significant changes in the expression levels of some ripening-related genes and the content of organic acid and soluble sugar. Overall, these findings provided comprehensive information about the FaU-box gene family and identified the potential FaU-box members participating in stress resistance and strawberry fruit ripening regulation.

14.
Genes (Basel) ; 11(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316116

RESUMO

The plant sucrose nonfermenting 1 (SNF1)-related protein kinases (SnRKs) are key regulators in the interconnection of various signaling pathways. However, little is known about the SnRK family in strawberries. In this study, a total of 26 FvSnRKs including one FvSnRK1, nine FvSnRK2s and 16 FvSnRK3s were identified from the strawberry genome database. They were respectively designated as FvSnRK1.1, FvSnRK2.1 to FvSnRK2.9 and FvSnRK3.1 to FvSnRK3.16, according to the conserved domain of each subfamily and multiple sequence alignment with Arabidopsis. FvSnRK family members were unevenly distributed in seven chromosomes. The number of exons or introns varied among FvSnRK1s, FvSnRK2s and FvSnRK3s, but highly conserved in the same subfamily. The FvSnRK1.1 had 10 exons. Most of FvSnRK2s had nine exons or eight introns, except FvSnRK2.4, FvSnRK2.8 and FvSnRK2.9. FvSnRK3 genes were divided into intron-free and intron-harboring members, and the number of introns in intron-harboring group ranged from 11 to 15. Moreover, the phylogenetic analysis showed SnRK1, SnRK2 and SnRK3 subfamilies respectively clustered together in spite of the different species of strawberry and Arabidopsis, indicating the genes were established prior to the divergence of the corresponding taxonomic lineages. Meanwhile, conserved motif analysis showed that FvSnRK sequences that belonged to the same subgroup contained their own specific motifs. Cis-element in promoter and expression pattern analyses of FvSnRK1.1 suggested that FvSnRK1.1 was involved in cold responsiveness, light responsiveness and fruit ripening. Taken together, this comprehensive analysis will facilitate further studies of the FvSnRK family and provide a basis for the understanding of their function in strawberry.


Assuntos
Fragaria/enzimologia , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fragaria/genética , Fragaria/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , Filogenia , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
15.
Hortic Res ; 6: 42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854215

RESUMO

To investigate the molecular mechanism underlying fruit development and color change, comparative transcriptome analysis was employed to generate transcriptome profiles of two typical wild varieties of Fragaria pentaphylla at three fruit developmental stages (green fruit stage, turning stage, and ripe fruit stage). We identified 25,699 long noncoding RNAs (lncRNAs) derived from 25,107 loci in the F. pentaphylla fruit transcriptome, which showed distinct stage- and genotype-specific expression patterns. Time course analysis detected a large number of differentially expressed protein-coding genes and lncRNAs associated with fruit development and ripening in both of the F. pentaphylla varieties. The target genes downregulated in the late stages were enriched in terms of photosynthesis and cell wall organization or biogenesis, suggesting that lncRNAs may act as negative regulators to suppress photosynthesis and cell wall organization or biogenesis during fruit development and ripening of F. pentaphylla. Pairwise comparisons of two varieties at three developmental stages identified 365 differentially expressed lncRNAs in total. Functional annotation of target genes suggested that lncRNAs in F. pentaphylla may play roles in fruit color formation by regulating the expression of structural genes or regulatory factors. Construction of the regulatory network further revealed that the low expression of Fra a and CHS may be the main cause of colorless fruit in F. pentaphylla.

16.
Int J Genomics ; 2019: 9203057, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828083

RESUMO

Strawberry is a typical nonclimacteric fruit, whose ripening mechanism needs to be further investigated. Sucrose has been recently proved as a signal molecule, participating in strawberry fruit ripening and related processes. While in the effects of sucrose application timing and concentration on ripening, fruit qualities remain unclear, as well as the transcriptome-wide details about the effects of sucrose on the gene expression involved in ripening-related processes. In this study, strawberry fruits at the degreening (DG), white (W), and initial-red (IR) stages were treated with different concentration of sucrose. The results showed that anthocyanin was increased while total polyphenol concentration (TPC) and total flavonoid concentration (TFC) were decreased during fruit development after sucrose treatment. Interestingly, It was showed that 100 mM sucrose application at the DG stage had the most obvious effects on fruit ripening; it made all the fruits turn into full-red (FR) around 4 days (d) earlier than the control, while it did not affect fruit quality traits and most bioactive compounds in the FR fruits. Subsequently, RNA sequencing (RNAseq) of the fruits collected at 8 days after 100 mM sucrose treatment was carried out. It was suggested that 993 genes were differentially expressed comparing with the control. Transcriptome-based expression analysis revealed that sucrose induced the expression of genes involved in the AsA and anthocyanin biosynthesis, while largely suppressed the expression of genes in TCA. The results obtained in this study provided more expression profiles of ripening-related genes under the treatment of sucrose, which will contribute to a better understanding for the mechanism underlying sucrose-induced fruit ripening.

17.
Sci Rep ; 8(1): 16786, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429497

RESUMO

The clustered regulatory interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system has developed into a powerful gene-editing tool that has been successfully applied to various plant species. However, studies on the application of the CRISPR/Cas9 system to cultivated Brassica vegetables are limited. Here, we reported CRISPR/Cas9-mediated genome editing in Chinese kale (Brassica oleracea var. alboglabra) for the first time. A stretch of homologous genes, namely BaPDS1 and BaPDS2, was selected as the target site. Several stable transgenic lines with different types of mutations were generated via Agrobacterium-mediated transformation, including BaPDS1 and BaPDS2 double mutations and BaPDS1 or BaPDS2 single mutations. The overall mutation rate reached 76.47%, and these mutations involved nucleotide changes of fewer than 10 bp. The clear albino phenotype was observed in all of the mutants, including one that harbored a mutation within an intron region, thereby indicating the importance of the intron. Cleavage in Chinese kale using CRISPR/Cas9 was biased towards AT-rich sequences. Furthermore, no off-target events were observed. Functional differences between BaPDS1 and BaPDS2 were also assessed in terms of the phenotypes of the respective mutants. In combination, these findings showed that CRISPR/Cas9-mediated targeted mutagenesis can simultaneously and efficiently modify homologous gene copies of Chinese kale and provide a convenient approach for studying gene function and improving the yield and quality of cultivated Brassica vegetables.


Assuntos
Brassica/genética , Sistemas CRISPR-Cas/genética , Genes de Plantas/genética , Mutagênese Sítio-Dirigida , Homologia de Sequência do Ácido Nucleico , China , Estudos de Associação Genética , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA