Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 249: 118421, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325790

RESUMO

Root exudate is a major source of soil organic matter and can significantly affect arsenic (As) migration and transformation in paddy soils. Citric acid is the main component of rice root exudate, however, the impacts and rules of citric acid on As bioavailability and rhizobacteria in different soils remains unclear. This study investigated the effects of citric acid on As transformation and microbial community in ten different paddy soils by flooded soil culture experiments. The results showed that citric acid addition increased total As and arsenate (As(V)) in the soil porewater by up to 41-fold and 65-fold, respectively, after 2-h incubation. As(V) was the main As species in soil porewater within 10 days with the addition of citric acid. Non-specifically sorbed As of soils, total Fe and total As were the main environmental factors affecting the soil microbial communities. High-throughput sequencing analysis demonstrated that citric acid addition significantly altered the soil microbial community structure, shifting the Proteobacteria-related reducing bacteria to Firmicutes-related reducing bacteria in different paddy soils. The relative abundance of Firmicutes was promoted by 174-196%. Clostridium-related bacteria belonging to Firmicutes became the dominant genera, which is believed to regulate As release through the reductive dissolution of iron oxides or the direct reduction of As(V) to arsenite (As(III)). However, citric acid addition significantly decreased the relative abundance of Geobacter and Anaeromyxobacter, which are also typical active As(V)- and ferric-reducing bacteria. Real-time quantitative polymerase chain reaction (qPCR) also revealed that the addition of citric acid significantly decreased the relative abundances of Geobacter in the different soils by 8-28 times while the relative abundances of Clostridium increased by 2-5 times. These results provide significant insight on As transformation in different types of rice rhizospheric soils and guidance for the application of rice varieties with low citric acid exuding to restrict As accumulation.


Assuntos
Arsênio , Ácido Cítrico , Oryza , Microbiologia do Solo , Poluentes do Solo , Arsênio/análise , Poluentes do Solo/análise , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Solo/química
2.
Sci Total Environ ; 948: 174656, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38992367

RESUMO

Microorganisms are vital to the emission of greenhouse gases and transforming pollutants in paddy soils. However, the impact of microbial diversity loss on anaerobic methane (CH4) oxidation and arsenic (As) reduction under flooded conditions remains unclear. In this study, we inoculated microbial suspensions into natural As-contaminated paddy soils using a dilution approach (untreated, 10-2, 10-4, 10-6, 10-8 dilutions) to manipulate microbial diversity levels. The results revealed that the 10-4 and 10-6 dilutions resulted in the highest CH4 emissions (97.0 µmol and 102.3 µmol) compared to untreated groups (27.6 µmol). However, anaerobic CH4 oxidation was not observed in 10-4 dilution groups and higher dilutions, suggesting the loss of diversity inhibited the natural reduction of CH4. Moreover, the porewater As concentration in the dilution groups was 1.8-8.2 times greater than in the untreated groups. The loss of microbial diversity promoted the reductive dissolution of iron (Fe) minerals bearing As, leading to increased concentrations of Fe(II) and dissolved organic carbon (DOC), which further enhanced As release (Fe(II), R = 0.9, p < 0.001) (DOC, R = 0.8, p < 0.001) from soil to porewater. However, CH4-dependent As(V) reduction was almost entirely inhibited under diversity loss. The decline in microbial diversity increased the relative abundances of methanogens (e.g., Methanobacterium and Methanomassiliicoccus), Fe(III)/As(V)-reducing bacteria (e.g., Bacillus, Clostridium_sensu_stricto_10, and Geobacter), and the related functional genes (i.e., mcrA and Geo). These findings suggest that microbial diversity is critical for specialized soil processes, highlighting the detrimental effects of biodiversity loss on CH4 emissions and As release in As-contaminated paddies.


Assuntos
Arsênio , Metano , Microbiologia do Solo , Poluentes do Solo , Metano/metabolismo , Metano/análise , Arsênio/análise , Arsênio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Solo/química , Oxirredução , Oryza , Bactérias/metabolismo , Microbiota , Gases de Efeito Estufa/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA