RESUMO
The research and development of alternatives to long-chain fluorocarbon surfactants are desperately needed because they are extremely toxic, difficult to break down, seriously harm the environment, and limit the use of conventional aqueous film-forming foam fire extinguishing agents. In this study, mixed surfactant systems containing the short-chain fluorocarbon surfactant perfluorohexanoic acid (PFHXA) and the hydrocarbon surfactant sodium dodecyl sulfate (SDS) were investigated by molecular dynamics simulation to investigate the microscopic properties at the air/water interface at different molar ratios. Some representative parameters, such as surface tension, degree of order, density distribution, radial distribution function, number of hydrogen bonds, and solvent-accessible surface area, were calculated. Molecular dynamics simulations show that compared with a single type of surfactant, mixtures of surfactants provide superior performance in improving the interfacial properties of the gas-liquid interface. A dense monolayer film is formed by the strong synergistic impact of the two surfactants. Compared to the pure SDS system, the addition of PFHXA caused SDS to be more vertically oriented at the air/water interface with a reduced tilt angle, and a more ordered structure of the mixed surfactants was observed. Hydrogen bonding between SDS headgroups and water molecules is enhanced with the increasing PFHXA. The surface activity is arranged in the following order: PFHXA/SDS = 1:1 > PFHXA/SDS = 3:1 > PFHXA/SDS = 1:3. These results indicate that a degree of synergistic relationship exists between PFHXA and SDS at the air/water interface.
RESUMO
It is necessary to develop novel and efficient alternatives to fluorocarbon surfactant and prepare fluorine-free environmentally-friendly fire extinguishing agent. The carboxyl modified polyether polysiloxane surfactant (CMPS) with high surface activity was synthesized via the esterification reaction using hydroxyl-containing polyether modified polysiloxane (HPMS) and maleic anhydride (MA) as raw materials. The process conditions of the esterification reaction were optimized by orthogonal tests, and the optimum process parameters were determined as follows: reaction temperature of 85 °C, reaction time of 4.5 h, isopropyl alcohol content of 20% and the molar ratio of HPMS/MA of 1/1. The chemical structure, surface activity, aggregation behavior, foam properties, wetting properties and electron distribution were systematically investigated. It was found that the carboxyl group was successfully grafted into silicone molecule, and the conjugated system was formed, which changed the interaction force between the molecules and would affect the surface activity of the aqueous solution. The CMPS exhibited excellent surface activity and could effectively reduce the water's surface tension to 18.46 mN/m. The CMPS formed spherical aggregates in aqueous solution, and the contact angle value of CMPS is 15.56°, illustrating that CMPS had excellent hydrophilicity and wetting performance. The CMPS can enhance the foam property and has good stability. The electron distribution results indicate that the introduced carboxyl groups are more inclined towards the negative charge band, which would be conducive to weak the interaction between molecules and improve the surface activity of the solution. Consequently, new foam fire extinguishing agents were prepared by using CMPS as a key component and they exhibited excellent fire-fighting performance. The prepared CMPS would be the optimal alternative to fluorocarbon surfactant and could be applied in foam extinguishing agents.
RESUMO
The catalytic performance in heterogeneous catalytic reactions consisting of solid reactants is strongly dependent on the nanostructure of the catalysts. Metal-oxides core-shell (MOCS) nanostructures have potential to enhance the catalytic activity for soot oxidation reactions as a result of optimizing the density of active sites located at the metal-oxide interface. Here, we report a facile strategy for fabricating nanocatalysts with self-assembled Pt@CeO2-δ-rich core-shell nanoparticles (NPs) supported on three-dimensionally ordered macroporous (3DOM) Ce1-xZrxO2via the in situ colloidal crystal template (CCT) method. The nanostructure-dependent activity of the catalysts for soot oxidation were investigated by means of SEM, TEM, H2-TPR, XPS, O2-isothermal chemisorption, soot-TPO and so on. A CeO2-δ-rich shell on a Pt core is preferentially separated from Ce1-xZrxO2 precursors and could self-assemble to form MOCS nanostructures. 3DOM structures can enhance the contact efficiency between catalysts and solid reactants (soot). Pt@CeO2-δ-rich core-shell nanostructures can optimize the density of oxygen vacancies (Ov) as active sites located at the interface of Pt-Ce1-xZrxO2. Remarkably, 3DOM Pt@CeO2-δ-rich/Ce1-xZrxO2 catalysts show super catalytic performance and strongly nanostructure-dependent activity for soot oxidation in the absence of NO and NO2. For example, the T50 of the 3DOM Pt@CeO2-δ-rich/Ce0.8Zr0.2O2 catalyst is lowered down to 408 °C, and the reaction rate of the 3DOM Pt@CeO2-δ-rich/Ce0.2Zr0.8O2 catalyst (0.12 µmol g-1 s-1) at 300 °C is 4 times that of the 3DOM Pt/Ce0.2Zr0.8O2 catalyst (0.03 µmol g-1 s-1). The structures of 3DOM Ce1-xZrxO2-supported Pt@CeO2-δ-rich core-shell NPs are decent systems for deep oxidation of solid reactants or macromolecules, and this facile technique for synthesizing catalysts has potential to be applied to other element compositions.