Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 136(4): 1284-7, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24428401

RESUMO

Superconductivity in low-dimensional compounds has long attracted much interest. Here we report superconductivity in a low-dimensional ternary telluride Ta4Pd3Te16 in which the repeating layers contain edge-sharing octahedrally coordinated PdTe2 chains along the crystallographic b axis. Measurements of electrical resistivity, magnetic susceptibility and specific heat on the Ta4Pd3Te16 crystals, grown via a self-flux method, consistently demonstrate bulk superconductivity at 4.6 K. Further analyses of the data indicate significant electron-electron interaction, which allows electronic Cooper pairing in the present system.

2.
J Am Chem Soc ; 134(31): 12893-6, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22823744

RESUMO

We have synthesized a new oxypnictide, Ba2Ti2Fe2As4O, via a solid-state reaction under a vacuum. The compound crystallizes in a body-centered tetragonal lattice, which can be viewed as an intergrowth of BaFe2As2 and BaTi2As2O, thus containing Fe2As2 layers and Ti2O sheets. Bulk superconductivity at 21 K is observed after annealing the as-prepared sample at 773 K for 40 h. In addition, an anomaly in resistivity and magnetic susceptibility around 125 K is revealed, suggesting a charge- or spin-density wave transition in the Ti sublattice.

3.
Materials (Basel) ; 14(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771819

RESUMO

In this study, we measure the in-plane transport properties of high-quality Ba(Fe0.914Co0.086)2As2 single crystals. Signatures of vortex unbinding Berezinskii-Kosterlitz-Thouless (BKT) transition are shown from both the conventional approach and the Fisher-Fisher-Huse dynamic scaling analysis, in which a characteristic Nelson-Kosterlitz jump is demonstrated. We also observe a non-Hall transverse signal exactly at the superconducting transition, which is explained in terms of guided motion of unbound vortices.

4.
J Phys Condens Matter ; 31(32): 325601, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31042685

RESUMO

We examined the physical properties of the quasi-one-dimensional superconductor Ta4Pd3Te16 in the normal state by detailed measurements of susceptibility, in-plane anisotropic resistivity, magnetoresistance, Hall resistivity, and Seebeck coefficient. The large Wilson ratio, as inferred from normal-state susceptibility, indicates strong electron-electron interaction. The Hall and Seebeck coefficients show not only significant temperature-dependent behavior, indicating the multiband effect, but also an obvious anomaly around T 1 = 40 K. Analyses of both the Hall resistivity and thermopower using a two-band model indicate that the electrons dominate the electrical transport at low temperatures. Our results imply that it is the quantum fluctuations of the charge order taking place in the temperature range 30-50 K that may result in the abnormal normal-state properties of Ta4Pd3Te16.

5.
Sci Rep ; 6: 21628, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876362

RESUMO

We report bulk superconductivity at 1.0 K in a low-dimensional ternary telluride Ta3Pd3Te14 containing edge-sharing PdTe2 chains along crystallographic b axis, similar to the recently discovered superconductor Ta4Pd3Te16. The electronic heat capacity data show an obvious anomaly at the transition temperature, which indicates bulk superconductivity. The specific-heat jump is ΔC/(γ(n)T(c)) ≈ 1.35, suggesting a weak coupling scenario. By measuring the low-temperature thermal conductivity, we conclude that Ta3Pd3Te14 is very likely a dirty s-wave superconductor. The emergence of superconductivity in Ta3Pd3Te14 with a lower T(c), compared to that of Ta4Pd3Te16, may be attributed to the lower density of states.

6.
J Phys Condens Matter ; 27(32): 325701, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26214563

RESUMO

We carried out measurements of the magnetoresistance, magnetic susceptibility and specific heat on crystals of the low-dimensional transition metal telluride Ta4Pd3Te16. Our results indicate that Ta4Pd3Te16 is an anisotropic type-II superconductor in the clean limit with the extracted Ginzburg-Landau parameter KGL = 84. The upper critical field Hc2(T) shows an anomalous temperature dependence at low temperatures and the anisotropy of Hc2(T) is strongly T-dependent, both of which indicate a multiband scenario. The electronic specific heat Cel(T) can be consistently described by a two-gap (s + d waves) model from the base temperature T/Tc ~ 0.12 up to Tc. Our results suggest nodal and multiband superconductivity in Ta4Pd3Te16.

7.
J Phys Condens Matter ; 26(2): 026002, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24316559

RESUMO

Ba0.6K0.4Fe2Se3 (BKFS) single crystals were investigated by means of measurements of powder x-ray diffraction, temperature-dependent resistivity, anisotropic dc magnetization, ac magnetic susceptibility and specific heat. The powder x-ray diffraction indicates staggered iron displacements along the ladders with short and long Fe-Fe bond lengths (2.64(2) and 2.91(2) Å) variation. The resistivity of BKFS exhibits variable range hopping behavior with ln(ρ) ~ T(-1/2) at low temperature. The magnetic susceptibility χ(T) exhibits a sharp cusp at around 20 K in a zero-field-cooled process. The frequency-dependent ac magnetic susceptibility reveals that the cusp feature is attributable to spin glass behavior. The anisotropic ac magnetic susceptibility indicates that BKFS is probably an anisotropic Heisenberg-like spin glass with its easy magnetization plane perpendicular to the chain direction. The specific heat also supports an insulating and spin glass ground state. Extended Curie-Weiss behavior above 40 K was observed with a reduced effective moment (µ(eff) = 1.66 µ(B)/Fe for H is perpendicular to b and µ(eff) = 1.82 µB/Fe for H is parallel to b) in BKFS, which is close to the spin-only magnetism with S=1/2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA