Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(1): 102-113.e14, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28648662

RESUMO

Temperature has a profound influence on plant and animal development, but its effects on stem cell behavior and activity remain poorly understood. Here, we characterize the responses of the Arabidopsis root to chilling (low but above-freezing) temperature. Chilling stress at 4°C leads to DNA damage predominantly in root stem cells and their early descendants. However, only newly generated/differentiating columella stem cell daughters (CSCDs) preferentially die in a programmed manner. Inhibition of the DNA damage response in these CSCDs prevents their death but makes the stem cell niche more vulnerable to chilling stress. Mathematical modeling and experimental validation indicate that CSCD death results in the re-establishment of the auxin maximum in the quiescent center (QC) and the maintenance of functional stem cell niche activity under chilling stress. This mechanism improves the root's ability to withstand the accompanying environmental stresses and to resume growth when optimal temperatures are restored.


Assuntos
Arabidopsis/fisiologia , Raízes de Plantas/citologia , Células-Tronco/citologia , Divisão Celular , Temperatura Baixa , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/fisiologia , Nicho de Células-Tronco , Estresse Fisiológico
2.
Plant Physiol ; 194(4): 2165-2182, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37995374

RESUMO

N6-methyladenosine (m6A) in mRNA and 5-methylcytosine (5mC) in DNA have critical functions for regulating gene expression and modulating plant growth and development. However, the interplay between m6A and 5mC is an elusive territory and remains unclear mechanistically in plants. We reported an occurrence of crosstalk between m6A and 5mC in maize (Zea mays) via the interaction between mRNA adenosine methylase (ZmMTA), the core component of the m6A methyltransferase complex, and decrease in DNA methylation 1 (ZmDDM1), a key chromatin-remodeling factor that regulates DNA methylation. Genes with m6A modification were coordinated with a much higher level of DNA methylation than genes without m6A modification. Dysfunction of ZmMTA caused severe arrest during maize embryogenesis and endosperm development, leading to a significant decrease in CHH methylation in the 5' region of m6A-modified genes. Instead, loss of function of ZmDDM1 had no noteworthy effects on ZmMTA-related activity. This study establishes a direct link between m6A and 5mC during maize kernel development and provides insights into the interplay between RNA modification and DNA methylation.


Assuntos
Metilação de DNA , Zea mays , Metilação de DNA/genética , Zea mays/genética , Zea mays/metabolismo , Metilação de RNA , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(15): e2120787119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385357

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy of T cell progenitors, known to be a heterogeneous disease in pediatric and adult patients. Here we attempted to better understand the disease at the molecular level based on the transcriptomic landscape of 707 T-ALL patients (510 pediatric, 190 adult patients, and 7 with unknown age; 599 from published cohorts and 108 newly investigated). Leveraging the information of gene expression enabled us to identify 10 subtypes (G1­G10), including the previously undescribed one characterized by GATA3 mutations, with GATA3R276Q capable of affecting lymphocyte development in zebrafish. Through associating with T cell differentiation stages, we found that high expression of LYL1/LMO2/SPI1/HOXA (G1­G6) might represent the early T cell progenitor, pro/precortical/cortical stage with a relatively high age of disease onset, and lymphoblasts with TLX3/TLX1 high expression (G7­G8) could be blocked at the cortical/postcortical stage, while those with high expression of NKX2-1/TAL1/LMO1 (G9­G10) might correspond to cortical/postcortical/mature stages of T cell development. Notably, adult patients harbored more cooperative mutations among epigenetic regulators, and genes involved in JAK-STAT and RAS signaling pathways, with 44% of patients aged 40 y or above in G1 bearing DNMT3A/IDH2 mutations usually seen in acute myeloid leukemia, suggesting the nature of mixed phenotype acute leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Transcriptoma , Criança , Humanos , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
4.
Cancer Cell Int ; 24(1): 13, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184573

RESUMO

Gastric cancer remains a leading cause of cancer-related death worldwide, largely due to inadequate screening methods, late diagnosis, and limited treatment options. Liquid biopsy has emerged as a promising non-invasive approach for cancer screening and prognosis by detecting circulating tumor components like circulating tumor DNA (ctDNA) in the blood. Numerous gastric cancer-specific ctDNA biomarkers have now been identified. CtDNA analysis provides insight into genetic and epigenetic alterations in tumors, holding promise for predicting treatment response and prognosis in gastric cancer patients. This review summarizes current research on ctDNA biology and detection technologies, while highlighting clinical applications of ctDNA for gastric cancer diagnosis, prognosis, and guiding treatment decisions. Current challenges and future perspectives for ctDNA analysis are also discussed.

5.
Phys Rev Lett ; 132(25): 253803, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38996228

RESUMO

The spin angular momentum (SAM) of an elliptically or circularly polarized light beam can be transferred to matter to drive a spinning motion. It is counterintuitive to find that a light beam without SAM can also cause the spinning of microparticles. Here, we demonstrate controllable spinning of birefringent microparticles via a tightly focused radially polarized vortex beam that has no SAM prior to focusing. To this end, the orbital Hall effect is proposed to control the radial separation of two spin components in the focused field, and tunable transfer of local SAM to microparticles is achieved by manipulating the twisted wavefront of the source light. Our work broadens the perspectives for controllable exertion of optical torques via the spin-orbit interactions.

6.
Mov Disord ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769620

RESUMO

BACKGROUND: Transcriptomic changes in the essential tremor (ET)-associated cerebello-thalamo-cortical "tremor network" and their association to brain structure have not been investigated. OBJECTIVE: The aim was to characterize molecular changes associated with network-level imaging-derived phenotypes (IDP) found in ET. METHODS: We performed an imaging-transcriptomic study in British adults using imaging-genome-wide association study summary statistics (UK Biobank "BIG40" cohort; n = 33,224, aged 40-69 years). We imputed imaging-transcriptomic associations for 184 IDPs and analyzed functional enrichment of gene modules and aggregate network-level phenotypes. Validation was performed in cerebellar-tissue RNA-sequencing data from ET patients and controls (n = 55). RESULTS: Among 237,896 individual predicted gene expression levels for 6063 unique genes/transcripts, we detected 2269 genome-wide significant associations (Bonferroni P < 2.102e-7, 0.95%). These were concentrated in intracellular volume fraction measures of white matter pathways and in genes with putative links to tremor (MAPT, ARL17A, KANSL1, SPPL2C, LRRC37A4P, PLEKHM1, and FMNL1). Whole-tremor-network cortical thickness was associated with a gene module linked to mitochondrial organization and protein quality control (r = 0.91, P = 2e-70), whereas white-gray T1-weighted magnetic resonance imaging (MRI) contrast in the tremor network was associated with a gene module linked to sphingolipid synthesis and ethanolamine metabolism (r = -0.90, P = 2e-68). Imputed association effect sizes and RNA-sequencing log-fold change in the validation dataset were significantly correlated for cerebellar peduncular diffusion MRI phenotypes, and there was a close overlap of significant associations between both datasets for gray matter phenotypes (χ2 = 6.40, P = 0.006). CONCLUSIONS: The identified genes and processes are potential treatment targets for ET, and our results help characterize molecular changes that could in future be used for patient treatment selection or prognosis prediction. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

7.
Langmuir ; 40(21): 11067-11077, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38739539

RESUMO

In recent years, graphitic carbon nitride (g-C3N4) has attracted considerable attention because it includes earth-abundant carbon and nitrogen elements and exhibits good chemical and thermal stability owing to the strong covalent interaction in its conjugated layer structure. However, bulk g-C3N4 has some disadvantages of low specific surface area, poor light absorption, rapid recombination of photogenerated charge carriers, and insufficient active sites, which hinder its practical applications. In this study, we design and synthesize potassium single-atom (K SAs)-doped g-C3N4 porous nanosheets (CM-KX, where X represents the mass of KHP added) via supramolecular self-assembling and chemical cross-linking copolymerization strategies. The results show that the utilization of supramolecules as precursors can produce g-C3N4 nanosheets with reduced thickness, increased surface area, and abundant mesopores. In addition, the intercalation of K atoms within the g-C3N4 nitrogen pots through the formation of K-N bonds results in the reduction of the band gap and expansion of the visible-light absorption range. The optimized K-doped CM-K12 nanosheets achieve a specific surface area of 127 m2 g-1, which is 11.4 times larger than that of the pristine g-C3N4 nanosheets. Furthermore, the optimal CM-K12 sample exhibits the maximum H2 production rate of 127.78 µmol h-1 under visible light (λ ≥ 420 nm), which is nearly 23 times higher than that of bare g-C3N4. This significant improvement of photocatalytic activity is attributed to the synergistic effects of the mesoporous structure and K SAs doping, which effectively increase the specific surface area, improve the visible-light absorption capacity, and facilitate the separation and transfer of photogenerated electron-hole pairs. Besides, the optimal sample shows good chemical stability for 20 h in the recycling experiments. Density functional theory calculations confirm that the introduction of K SAs significantly boosts the adsorption energy for water and decreases the activation energy barrier for the reduction of water to hydrogen.

8.
Pharmacol Res ; 205: 107263, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876442

RESUMO

Pressure overload-induced pathological cardiac hypertrophy eventually leads to heart failure (HF). Unfortunately, lack of effective targeted therapies for HF remains a challenge in clinical management. Mixed-lineage leukemia 4 (MLL4) is a member of the SET family of histone methyltransferase enzymes, which possesses histone H3 lysine 4 (H3K4)-specific methyltransferase activity. However, whether and how MLL4 regulates cardiac function is not reported in adult HF. Here we report that MLL4 is required for endoplasmic reticulum (ER) stress homeostasis of cardiomyocytes and protective against pressure overload-induced cardiac hypertrophy and HF. We observed that MLL4 is increased in the heart tissue of HF mouse model and HF patients. The cardiomyocyte-specific deletion of Mll4 (Mll4-cKO) in mice leads to aggravated ER stress and cardiac dysfunction following pressure overloading. MLL4 knockdown neonatal rat cardiomyocytes (NRCMs) also display accelerated decompensated ER stress and hypertrophy induced by phenylephrine (PE). The combined analysis of Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and RNA sequencing (RNA-seq) data reveals that, silencing of Mll4 alters the chromatin landscape for H3K4me1 modification and gene expression patterns in NRCMs. Interestingly, the deficiency of MLL4 results in a marked reduction of H3K4me1 and H3K27ac occupations on Thrombospondin-4 (Thbs4) gene loci, as well as Thbs4 gene expression. Mechanistically, MLL4 acts as a transcriptional activator of Thbs4 through mono-methylation of H3K4 and further regulates THBS4-dependent ER stress response, ultimately plays a role in HF. Our study indicates that pharmacologically targeting MLL4 and ER stress might be a valid therapeutic approach to protect against cardiac hypertrophy and HF.


Assuntos
Estresse do Retículo Endoplasmático , Insuficiência Cardíaca , Histona-Lisina N-Metiltransferase , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Humanos , Camundongos Knockout , Ratos , Camundongos , Células Cultivadas , Cardiomegalia/metabolismo , Cardiomegalia/genética , Ratos Sprague-Dawley , Trombospondinas
9.
Cancer Control ; 31: 10732748241257142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769028

RESUMO

OBJECTIVES: To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND: MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS: The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS: ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS: This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.


Assuntos
Progressão da Doença , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Circular , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , RNA Circular/genética , Regulação Neoplásica da Expressão Gênica , Masculino , Proliferação de Células/genética , Linhagem Celular Tumoral , Feminino , Camundongos , Animais , Movimento Celular/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-38526650

RESUMO

PURPOSE OF REVIEW: Lumbar facet pain is generally considered to be one of the major causes of chronic low back pain. Each lumbar facet joint is innervated by the medial branch of the posterior spinal nerve from its own level and above. Radiofrequency (RF) of the medial branch of the posterior branch of the spinal nerve is an effective method for the treatment of lumbar facet pain. RF technology is diverse, including traditional radiofrequency (TRF), pulsed radiofrequency (PRF), cooled radiofrequency (CRF), low-temperature plasma radiofrequency ablation (CA), and other treatment methods. The purpose of this paper is to compare the efficacy of different radiofrequency techniques and to analyze the reasons for this in the context of anatomy. RECENT FINDINGS: There have been studies confirming the differences in efficacy of different RF techniques. However, most of the studies only compared two RF techniques, not four techniques, TRF, CRF, PRF, and CA, and did not analyze the reasons for the differences in efficacy. This article reviews the differences in the efficacy of the above four RF techniques, clarifies that the differences are mainly due to the inability to precisely localize the medial branch of the posterior branch of the spinal nerve, analyzes the reasons for the inability to precisely localize the posterior branch of the spinal nerve in conjunction with anatomy, and proposes that the development of RF technology for lumbar facet pain requires more in-depth anatomical, imaging, and clinical studies.

11.
J Environ Manage ; 351: 119886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142601

RESUMO

Comparing with single phytohormone application, applying multiple phytohormones to microalgae-based wastewater treatment systems can offer more extensive growth-promoting and stress-protecting effects for microalgae, yet the advantage of stress-relieving salicylic acid (SA) under combined phytohormones application scenario has not been exploited. Employing the improved capillary-driven attached microalgae culturing device (CD-PBR) previously used for single phytohormone application, this study compared the effects of mixed and single phytohormone(s) addition under as low as 10-7 M dosage. In order to make the best of SA for its stress-relieving property, postponed SA addition combined with applying other phytohormone(s) at the beginning of microalgae cultivation was also investigated. Combination of 10-6 M 6-benzylaminopurine (6-BA) with 10-7 M SA was sufficient for enhancing growth-promoting effects and anti-oxidative responses for attached Chlorella sp., while indole-3-acetic acid (IAA) addition was unnecessary. Combination of 6-BA addition at the beginning while postponed SA addition on Day 4 could further sustain such beneficial effects, while removing up to 99.7% total nitrogen (TN) and 97.9% total phosphorus (TP) from the bulk liquid. These results provided innovative strategies on mixed phytohormones addition for microalgae.


Assuntos
Chlorella , Microalgas , Reguladores de Crescimento de Plantas/farmacologia , Biofilmes , Nitrogênio , Biomassa
12.
Zhongguo Zhong Yao Za Zhi ; 49(1): 88-99, 2024 Jan.
Artigo em Zh | MEDLINE | ID: mdl-38403342

RESUMO

Anemarrhena asphodeloides is a common medicinal material used in clinical prescriptions and Chinese patent medicine. In this study, the Illumina platform was used to obtain the chloroplast genome sequences of seven kinds of A. asphodeloides from different areas. The specific DNA barcodes were screened by comparative genomics analysis, and the DNA barcodes were used to identify the germplasm resources and analyze the genetic diversity of A. asphodeloides samples from different areas in China. All the seven chloroplast genomes had a ring structure. The total length was 156 801-156 930 bp, and 113 genes were annotated, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative genomics analysis showed that rps16, trnG-GCC, atpF, rpoB, ycf3, rpl16, ndhF, trnS-GCU_trnG-GCC, petN-psbM, and ndhF-rpl32 were potential candidates for specific DNA barcodes of A. asphodeloides. In this study, the second intron of ycf3 and atpF intron sequences with a sequence length of 700-800 bp and easy amplification were selected for polymerase chain reaction(PCR) amplification and sequencing of 594 samples from 26 areas. The sequence analysis showed that six and eight haplotypes of ycf3 and atpF sequences could be identified, respectively, and 17 haplotypes could be identified by combined analysis of the two sequences, which were named Hap1-Hap17. The haplotype diversity(H_d), nucleotide diversity(P_i), and genetic distance of A. asphodeloides in 26 populations were 0.68, 0.93×10~(-3), and 0-0.003 1, respectively, indicating that the genetic diversity within the species of A. asphodeloides is rich. The intermediary adjacent network analysis showed that Hap5 was the oldest haplotype, which was mainly distributed in Yixian county of Baoding, Hebei province, Hequ county of Xinzhou, Shanxi province, and Xiangfen county of Linfen, Shanxi province. This study has important guiding significance for the identification of A. asphodeloides species, the protection and development of germplasm resources, and the identification of production areas, and it provides a research basis for further revealing the genetic evolution law of A. asphodeloides.


Assuntos
Anemarrhena , Anemarrhena/química , Código de Barras de DNA Taxonômico , Variação Genética , China , Filogenia
13.
Angew Chem Int Ed Engl ; 63(23): e202403317, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38578721

RESUMO

We demonstrate directed translocation of ClO4 - anions from cationic to neutral binding site along the synthetized BPym-OH dye molecule that exhibits coupled excited-state intramolecular proton-transfer (ESIPT) and charge-transfer (CT) reaction (PCCT). The results of steady-state and time-resolved spectroscopy together with computer simulation and modeling show that in low polar toluene the excited-state redistribution of electronic charge enhanced by ESIPT generates the driving force, which is much stronger than by CT reaction itself and provides more informative gigantic shifts of fluorescence spectra signaling on ultrafast ion motion. The associated with ion translocation red-shifted fluorescence band (at 750 nm, extending to near-IR region) appears at the time ~83 ps as a result of electrochromic modulation of PCCT reaction. It occurs at substantial delay to PCCT that displayed fluorescence band at 640 nm and risetime of <200 fs. Thus, it becomes possible to visualize the manifestations of light-triggered ion translocation and of its driving force by fluorescence techniques and to separate them in time and energy domains.

14.
Gut ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050079

RESUMO

OBJECTIVES: Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN: Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS: We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION: Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.

15.
Proteins ; 91(1): 16-21, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36514832

RESUMO

Alpha(α)-synuclein is closely related to the pathogenesis of Parkinson's disease (PD). The NACore, a fragment of α-synuclein, is considered to be the key region of α-synuclein that causes PD. The aggregation dynamics of NACores are studied via coarse-grained molecular dynamics simulations. We find that NACores can self-assemble into a large cluster at high concentrations. The aggregation dynamics can be divided into three stages. The growth kinetics for the first and second stages follows the power law, Smax ~ tγ , with the second stage faster than the first one. The characteristic lifetime for the high concentration is 40 times larger than that for the low concentration, implying the low fluidity. Understanding the aggregation dynamics of NACores is helpful to develop drugs for therapeutic prevention and intervention.


Assuntos
Simulação de Dinâmica Molecular , alfa-Sinucleína , alfa-Sinucleína/química , Cinética , Peptídeos/química
16.
Mol Cancer ; 22(1): 85, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210576

RESUMO

BACKGROUND: Enhancer of zeste homolog 2 (EZH2), the key catalytic subunit of polycomb repressive complex 2 (PRC2), is overexpressed and plays an oncogenic role in various cancers through catalysis-dependent or catalysis-independent pathways. However, the related mechanisms contributing to ovarian cancer (OC) are not well understood. METHODS: The levels of EZH2 and H3K27me3 were evaluated in 105 OC patients by immunohistochemistry (IHC) staining, and these patients were stratified based on these levels. Canonical and noncanonical binding sites of EZH2 were defined by chromatin immunoprecipitation sequencing (ChIP-Seq). The EZH2 solo targets were obtained by integrative analysis of ChIP-Seq and RNA sequencing data. In vitro and in vivo experiments were performed to determine the role of EZH2 in OC growth. RESULTS: We showed that a subgroup of OC patients with high EZH2 expression but low H3K27me3 exhibited the worst prognosis, with limited therapeutic options. We demonstrated that induction of EZH2 degradation but not catalytic inhibition profoundly blocked OC cell proliferation and tumorigenicity in vitro and in vivo. Integrative analysis of genome-wide chromatin and transcriptome profiles revealed extensive EZH2 occupancy not only at genomic loci marked by H3K27me3 but also at promoters independent of PRC2, indicating a noncanonical role of EZH2 in OC. Mechanistically, EZH2 transcriptionally upregulated IDH2 to potentiate metabolic rewiring by enhancing tricarboxylic acid cycle (TCA cycle) activity, which contributed to the growth of OC. CONCLUSIONS: These data reveal a novel oncogenic role of EZH2 in OC and identify potential therapeutic strategies for OC by targeting the noncatalytic activity of EZH2.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Ovarianas , Humanos , Feminino , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Ovarianas/patologia , Metilação , Linhagem Celular Tumoral
17.
Bioorg Chem ; 140: 106808, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666110

RESUMO

Peptide YY (PYY) is a gastrointestinal hormone consisting of 36 amino acids, that is predominantly secreted by intestinal l-cells. Originally extracted from pig intestines, it belongs to the pancreatic polypeptide (PP) family, but has functions distinct from those of PP and neuropeptide Y (NPY). PYY is a potential treatment for type 2 diabetes mellitus (T2DM) because of its ability to delay gastric emptying, reduce appetite, decrease weight, and lower blood glucose. However, the clinical use of PYY is limited because it is rapidly cleared by the kidneys and degraded by enzymes. In recent years, researchers have conducted various structural modifications, including amino acid substitution, PEGylation, lipidation, and fusion of PYY with other proteins to prolong its half-life and enhance its biological activity. This study presents an overview of the recent progress on PYY, including its physiological functions, metabolites and structure-activity relationships.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo YY , Animais , Suínos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Obesidade/tratamento farmacológico , Substituição de Aminoácidos , Aminoácidos
18.
Acta Pharmacol Sin ; 44(4): 841-852, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36253561

RESUMO

Small-cell lung cancer (SCLC) is an aggressive high-grade neuroendocrine carcinoma of the lung associated with early metastasis and an exceptionally poor prognosis. Little progress has been made in developing efficacious targeted therapy for this recalcitrant disease. Herein, we showed that H3.3, encoded by two genes (H3F3A and H3F3B), was prominently overexpressed in SCLC. Darinaparsin (ZIO-101), a derivative of arsenic trioxide, dose- and time-dependently inhibited the viability of SCLC cells in an H3.3-dependent manner. More importantly, ZIO-101 treatment resulted in substantial accumulation of H3.3 and PARP1 besides induction of G2/M cell cycle arrest and apoptosis in SCLC cells. Through integrative analysis of the RNA-seq data from Cancer Cell Line Encyclopedia dataset, JNCI and Genomics of Drug Sensitivity in Cancer 2 datasets, we found that H3F3A expression was negatively correlated with the IC50 values of PARP inhibitors (PARPi). Furthermore, co-targeting H3.3 and PARP1 by ZIO-101 and BMN673/olaparib achieved synergistic growth inhibition against SCLC in vitro and in vivo. In conclusion, it is feasible to target H3.3 by ZIO-101 to potentiate the response rate of PARPi in SCLC patients.


Assuntos
Arsenicais , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Arsenicais/farmacologia , Arsenicais/uso terapêutico , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Ftalazinas/farmacologia
19.
Acta Pharmacol Sin ; 44(6): 1206-1216, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36635422

RESUMO

Hypertensive nephropathy (HTN) ranks as the second-leading cause of end-stage renal disease (ESRD). Accumulating evidence suggests that persistent hypertension injures tubular cells, leading to tubulointerstitial fibrosis (TIF), which is involved in the pathogenesis of HTN. G protein-coupled receptors (GPCRs) are implicated in many important pathological and physiological processes and act as important drug targets. In this study, we explored the intrarenal mechanisms underlying hypertension-associated TIF, and particularly, the potential role of GPR97, a member of the adhesion GPCR subfamily, in TIF. A deoxycorticosterone acetate (DOCA)/salt-induced hypertensive mouse model was used. We revealed a significantly upregulated expression of GPR97 in the kidneys, especially in renal tubules, of the hypertensive mice and 10 patients with biopsy-proven hypertensive kidney injury. GPR97-/- mice showed markedly elevated blood pressure, which was comparable to that of wild-type mice following DOCA/salt treatment, but dramatically ameliorated renal injury and TIF. In NRK-52E cells, we demonstrated that knockdown of GPR97 suppressed the activation of TGF-ß signaling by disturbing small GTPase RhoA-mediated cytoskeletal reorganization, thus inhibiting clathrin-mediated endocytosis of TGF-ß receptors and subsequent Smad activation. Collectively, this study demonstrates that GPR97 contributes to hypertension-associated TIF at least in part by facilitating TGF-ß signaling, suggesting that GPR97 is a pivotal intrarenal factor for TIF progression under hypertensive conditions, and therapeutic strategies targeting GPR97 may improve the outcomes of patients with HTN.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão Renal , Hipertensão , Camundongos , Animais , Acetato de Desoxicorticosterona/efeitos adversos , Rim/patologia , Hipertensão Renal/tratamento farmacológico , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Hipertensão/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Fibrose
20.
Bull Entomol Res ; 113(1): 72-78, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35938224

RESUMO

The codling moth Cydia pomonella is a major pest of global significance impacting pome fruits and walnuts. It threatens the apple industry in the Loess Plateau and Bohai Bay in China. Sterile insect technique (SIT) could overcome the limitations set by environmentally compatible area-wide integrated pest management (AW-IPM) approaches such as mating disruption and attract-kill that are difficult to suppress in a high-density pest population, as well as the development of insecticide resistance. In this study, we investigated the effects of X-ray irradiation (183, 366, 549 Gy) on the fecundity and fertility of a laboratory strain of C. pomonella, using a newly developed irradiator, to evaluate the possibility of X-rays as a replacement for Cobalt60 (60Co-γ) and the expanded future role of this approach in codling moth control. Results show that the 8th-day is the optimal age for irradiation of male pupae. The fecundity decreased significantly as the dosage of radiation increased. The mating ratio and mating number were not influenced. However, treated females were sub-sterile at a radiation dose of 183 Gy (20.93%), and were almost 100% sterile at a radiation dose of 366 Gy or higher. Although exposure to a radiation dose of 366 Gy resulted in a significant reduction in the mating competitiveness of male moths, our radiation biology results suggest that this new generation of X-ray irradiator has potential applications in SIT programs for future codling moth control.


Assuntos
Infertilidade , Mariposas , Feminino , Masculino , Animais , Raios X , Raios gama , Fertilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA