Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Environ Sci Technol ; 57(13): 5231-5242, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36947878

RESUMO

A comprehensive, generalized approach to predict the retention of per- and polyfluoroalkyl substances (PFAS) from aqueous film-forming foam (AFFF) by a soil matrix as a function of PFAS molecular and soil physiochemical properties was developed. An AFFF with 34 major PFAS (12 anions and 22 zwitterions) was added to uncontaminated soil in one-dimensional saturated column experiments and PFAS mass retained was measured. PFAS mass retention was described using an exhaustive statistical approach to generate a poly-parameter quantitative structure-property relationship (ppQSPR). The relevant predictive properties were PFAS molar mass, mass fluorine, number of nitrogens in the PFAS molecule, poorly crystalline Fe oxides, organic carbon, and specific (BET-N2) surface area. The retention of anionic PFAS was nearly independent of soil properties and largely a function of molecular hydrophobicity, with the size of the fluorinated side chain as the main predictor. Retention of nitrogen-containing zwitterionic PFAS was related to poorly crystalline metal oxides and organic carbon content. Knowledge of the extent to which a suite of PFAS may respond to variations in soil matrix properties, as developed here, paves the way for the development of reactive transport algorithms with the ability to capture PFAS dynamics in source zones over extended time frames.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Solo , Poluentes Químicos da Água/análise , Minerais , Água , Carbono
2.
Appl Soil Ecol ; 165: 1-12, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36034161

RESUMO

Abandoned mine lands present persistent environmental challenges to ecosystems and economies; reclamation an important step for overcoming these challenges. Phytostabilization is an elegant and cost-effective reclamation strategy, however, establishing plants on severely degraded soils is problematic, often requiring soil amendment additions. We evaluated whether amendment mixtures composed of lime, biochar, biosolids, and locally effective microbes (LEM) could alleviate the constraints that hinder phytostabilization success. We hypothesized that 1) plants grown in tailings amended with lime, biochar, and biosolids (LBB) would establish faster and grow larger than plants grown in tailings amended with lime only, and 2) the LEM source would influence microbial community function and structure in amended mine tailings. We conducted a greenhouse study that simulated in situ conditions to measure the influence of LBB-LEM amendment blends on plant growth, plant nutrients, metal concentrations, microbial function, and microbial community structure. Blue wildrye [Elymus glaucus Buckley ssp. Jepsonii (Burtt Davy) Gould] was grown in tailings collected from the Formosa mine site amended with various combinations of LBB-LEM. The above and below ground biomass of plants grown in mine tailings amended with LBB was 3 to 4 times larger than the biomass of plants grown in tailings amended only with lime. Although the LEM addition did not influence immediate plant growth, it did affect nutrient content and altered the rhizosphere community membership. As such, it is not yet clear if LEM-driven alterations in microbial membership will advance mine reclamation strategies by improving long-term growth.

3.
Agron J ; 11(7): 1-11, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35769313

RESUMO

The long-term application of manures in watersheds with dense animal production has increased soil phosphorus (P) concentration, exceeding plant and soil assimilative capacities. The P accumulated in soils that are heavily manured and contain excess extractable soil P concentrations is known as legacy P. Runoff and leaching can transport legacy P to ground water and surface water bodies, contributing to water quality impairment and environmental pollution, such as eutrophication. This review article analyzes and discusses current and innovative management practices for soil legacy P. Specifically, we address the use of biochar as an emerging novel technology that reduces P movement and bioavailability in legacy P soils. We illustrate that properties of biochar can be affected by pyrolysis temperature and by various activating chemical compounds and by-products. Our approach consists of engineering biochars, using an activation process on poultry litter feedstock before pyrolysis to enhance the binding or precipitation of legacy P. Finally, this review article describes previous examples of biochar activation and offers new approaches to the production of biochars with enhanced P sorption capabilities.

4.
HortScience ; 55(2): 261-271, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32296248

RESUMO

Essential nutrient concentrations in crops can affect human health. While biochar has the potential as a soil amendment to improve crop yields, it may also affect the concentrations of nutrients such as Ca, Fe, K, Mg, Mn, and Zn in edible portions of crops. To better characterize effects of biochar on important human nutrients in food crops, we evaluated the effects of biochar on lettuce (Lactuca sativa L. cv. Black-Seeded Simpson) leaf and carrot [Daucus carota subsp. sativus (Hoffm.) Schübl. cv. Tendersweet] developing taproot nutrients. Plants were grown in pots in a greenhouse using sandy loam (Coxville, fine, kaolinitic, thermic Typic Paleaquults) and loamy sand (Norfolk, fine-loamy, kaolinitic, thermic Typic Kandiudults,) series soils, amended with biochar produced from four feedstocks: pine chips (PC), poultry litter (PL), swine solids (SS), and switchgrass (SG); and two blends of PC plus PL [Pc/PL, 50%/50% (55) and 80%/20% (82) by weight]. Biochar was produced at 350, 500, and 700 °C from each feedstock. Lettuce leaf and carrot taproot total nutrient concentrations were determined by inductively coupled plasma analysis. Biochar (especially at least in part manure-based, i.e., PL, SS, 55, and 82 at nearly all temperatures) primarily decreased nutrient concentrations in lettuce leaves, with Ca, Mg, and Zn affected most. Carrot taproot nutrient concentrations also deceased, but to a lesser extent. Some biochars increased leaf or taproot nutrient concentrations, especially K. This study indicated that biochar can both decrease and increase leaf and taproot nutrient concentrations important for human health. Thus, potential effects on nutrients in plants should be carefully considered when biochar is used as a soil amendment with vegetable crops.

5.
Geoderma ; 348: 1-11, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34795456

RESUMO

In ponderosa pine (Pinus ponderosa) forests of the western United States, prescribed burns are used to reduce fuel loads and restore historical fire regimes. The season of and interval between burns can have complex consequences for the ecosystem, including the production of pyrogenic carbon (PyC). PyC plays a crucial role in soil carbon cycling, displaying turnover times that are orders of magnitude longer than unburned organic matter. This work investigated how the season of and interval between prescribed burns affect soil organic matter, including the formation and retention of PyC, in a ponderosa pine forest of eastern Oregon. In 1997 a prescribed burn study was implemented in Malheur National Forest to examine the ecological effects of burning at 5 and 15-year intervals in either the spring or fall. In October 2015, both O-horizon and mineral soil (0-15 cm) samples were collected and analyzed for PyC concentration, content, and structure using the benzene polycarboxylic acid (BPCA) method. O-horizon depth, carbon and nitrogen concentration and content, pH, and bulk density were also measured. Plots burned in the spring and fall had lower C and N stocks in the O-horizon compared to the unburned controls due to a reduction in O-horizon depth; however, we did not observe any differences in O-horizon concentration of C or N. Moreover, the concentration and stock of C and N in the mineral soil of plots burned in the spring or fall was the same as or only very slightly different from the unburned controls, suggesting that the prescribed burns on these sites have not adversely affected SOM quantity. Compared to unburned controls, we estimate that fall burns increased the mean PyC concentration of the mineral soil by 8.42 g BPCA/kg C. We did not detect a difference in mean PyC concentration of the mineral soil between the spring burns and the unburned controls; however, the spring burn plots did contain a number of isolated pockets with very high concentrations of PyC, suggesting a patchier burn pattern for these plots. In general, there was no detectable difference in any of the response variables when comparing the various prescribed burn treatments to one another. The disturbance caused by the reintroduction of fire to this ecosystem may have obscured subtle differences caused by the different seasons and intervals of burn that could become more apparent over time.

6.
Environ Sci Technol ; 52(17): 10067-10077, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30075627

RESUMO

It is important to understand molecular effects on plants exposed to compounds released from use of products containing engineered nanomaterials. Here, we present mRNA sequencing data on transcriptome impacts to Douglas-fir following 2 weeks of sublethal exposure to 30:1 diluted airborne emissions released from combustion of diesel fuel containing engineered CeO2 nanoparticle catalysts (DECe). Our hypothesis was that chamber exposure to DECe would induce distinct transcriptome changes in seedling needles compared with responses to conventional diesel exhaust (DE) or filtered DECe Gas Phase. Significantly increased uptake/binding of Ce in needles of DECe treated seedlings was 2.7X above background levels and was associated with altered gene expression patterns. All 225 Blast2GO gene ontologies (GOs) enriched by up-regulated DECe transcripts were nested within GOs for DE, however, 29 of 31 enriched GOs for down-regulated DECe transcripts were unique. MapMan analysis also identified three pathways enriched with DECe down-regulated transcripts. There was prominent representation of genes with attenuated expression in transferase, transporter, RNA regulation and protein degradation GOs and pathways. CeO2 nanoparticle additive decreased and shifted molecular impact of diesel emissions. Wide-spread use of such products and chronic environmental exposure to DECe may adversely affect plant physiology and development.


Assuntos
Nanopartículas , Pseudotsuga , Gasolina , Transcriptoma , Emissões de Veículos
7.
Soil Biol Biochem ; 125: 178-184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-32076353

RESUMO

We followed soil C fluxes in a subalpine grassland system exposed to experimentally increased atmospheric N deposition for 7 years. Earlier we found that, different from the plant productivity response, the bulk soil C stock increase was highest at the medium, not the high N input as hypothesized. This implies that a smaller N-deposition rate has a greater potential to favor the biological greenhouse gas-sink. To help elucidate the mechanisms controlling those changes in SOC in response to N deposition, we produced four soil density fractions and analyzed soil organic C concentration [SOC], as well as δ13C signatures (δ13CSOC) of SOC components. Soil respired CO2 (δ13CCO2) was analyzed to better distinguish seasonal short term dynamics from N-deposition effects and to identify the predominant substrate of soil respiration. Both at the start of the experiment and after 7 years we found a strong, negative correlation between [SOC] and δ13CSOC of the soil density fractions in the control treatment, consistent with an advanced stage of microbial processing of SOC in fractions of higher density. During the experiment the [SOC] increased in the two lighter density fractions, but decreased in the two heavier fractions, suggesting a possible priming effect that accelerated decomposition of formerly recalcitrant (heavy) organic matter pools. The seasonal pattern of soil δ13CCO2 was affected by weather and canopy development, and δ13CCO2 values for the different N treatment levels indicated that soil respiration originated primarily from the lightest density fractions. Surprisingly, [SOC] increases were significantly higher under medium N deposition in the <1.8 fraction and in bulk soil, compared to the high N treatment. Analogously, the depletion of δ13CSOC was significantly higher in the medium compared to the high N treatment in the three lighter fractions. Thus, medium N deposition favored the highest C sequestration potential, compared to the low N control and the high N treatment. Clearly, our results show that it is inappropriate to use plant productivity N response as an indicator for shifts in SOC content in grassland ecosystems. Here, isotopic techniques illustrated why atmospheric N deposition of 14 kg N ha-1 yr-1 is below, and 54 kg N ha-1 yr-1 is above a threshold that tips the balance between new, assimilative gains and respiratory losses towards a net loss of [SOC] for certain soil fractions in the subalpine grassland.

8.
Ecol Appl ; 27(2): 503-518, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27767233

RESUMO

Balancing economic, ecological, and social values has long been a challenge in the forests of the Pacific Northwest, where conflict over timber harvest and old-growth habitat on public lands has been contentious for the past several decades. The Northwest Forest Plan, adopted two decades ago to guide management on federal lands, is currently being revised as the region searches for a balance between sustainable timber yields and habitat for sensitive species. In addition, climate change imposes a high degree of uncertainty on future forest productivity, sustainability of timber harvest, wildfire risk, and species habitat. We evaluated the long-term, landscape-scale trade-offs among carbon (C) storage, timber yield, and old forest habitat given projected climate change and shifts in forest management policy across 2.1 million hectares of forests in the Oregon Coast Range. Projections highlight the divergence between private and public lands under business-as-usual forest management, where private industrial forests are heavily harvested and many public (especially federal) lands increase C and old forest over time but provide little timber. Three alternative management scenarios altering the amount and type of timber harvest show widely varying levels of ecosystem C and old-forest habitat. On federal lands, ecological forestry practices also allowed a simultaneous increase in old forest and natural early-seral habitat. The ecosystem C implications of shifts away from current practices were large, with current practices retaining up to 105 Tg more C than the alternative scenarios by the end of the century. Our results suggest climate change is likely to increase forest productivity by 30-41% and total ecosystem C storage by 11-15% over the next century as warmer winter temperatures allow greater forest productivity in cooler months. These gains in C storage are unlikely to be offset by wildfire under climate change, due to the legacy of management and effective fire suppression. Our scenarios of future conditions can inform policy makers, land managers, and the public about the potential effects of land management alternatives, climate change, and the trade-offs that are inherent to management and policy in the region.


Assuntos
Carbono/análise , Mudança Climática , Agricultura Florestal/métodos , Florestas , Árvores , Oregon , Árvores/crescimento & desenvolvimento , Madeira
9.
J Environ Qual ; 46(3): 659-666, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28724092

RESUMO

The unique physical and chemical properties of biochars make them promising materials for odor, gas, and nutrient sorption. Floating covers made from organic materials (biocovers) are one option for reducing odor and gas emissions from livestock manure lagoons. This study evaluated the potential of floating biochar covers to reduce odor and gas emissions while simultaneously sorbing nutrients from liquid dairy manure. This new approach has the potential to mitigate multiple environmental problems. Two biochars were tested: one made via gasification of Douglas fir chips at 650°C (FC650), and the other made from a mixture of Douglas fir [ (Mirb.) Franco] bark and center wood pyrolyzed at 600°C (HF600). The HF600 biocover reduced mean headspace ammonia concentration by 72 to 80%. No significant reduction was found with the FC650 biocover. Nutrient uptake ranged from 0.21 to 4.88 mg N g biochar and 0.64 to 2.70 mg P g biochar for the HF600 and FC650 biochars, respectively. Potassium ranged from a loss of 4.52 to a gain of 2.65 mg g biochar for the FC650 and HF600 biochars, respectively. The biochars also sorbed Ca, Mg, Na, Fe, Al, and Si. In a separate sensory evaluation, judges assessed odor offensiveness and odor threshold of five biocover treatments including four biochars applied over dairy manure. Reductions in mean odor offensiveness and mean odor threshold were observed in three treatments compared with the control. These results show that biochar covers hold promise as an effective practice for reducing odor and gas emissions while sorbing nutrients from liquid dairy manure.


Assuntos
Carvão Vegetal , Indústria de Laticínios , Esterco , Amônia , Madeira
10.
J Environ Qual ; 45(3): 1013-20, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27136169

RESUMO

Heavy metals in exposed mine tailings threaten ecosystems that surround thousands of abandoned mines in the United States. Biochars derived from the pyrolysis or gasification of biomass may serve as a valuable soil amendment to revegetate mine sites. We evaluated the ability of two biochars, produced by gasification of either Kentucky bluegrass seed screenings (KB) or mixed conifer wood (CW), to support the growth of plants in mine spoils from the abandoned Formosa and Almeda Mines in Oregon. To evaluate the potential for plant establishment in mine tailings, wheat was grown in tailings amended with biochar at rates ranging from 0 to 9% (w/w). Both KB and CW biochars promoted plant establishment by increasing soil pH, increasing concentrations of macro- and micronutrients, and decreasing the solubility and plant uptake of heavy metals. Formosa tailings required at least 4% biochar and Almeda soil required at least 2% biochar to promote healthy wheat growth. A complimentary experiment in which mine spoils were leached with simulated precipitation indicated that biochar amendment rates ≥4% were sufficient to neutralize the elution pH and reduce concentrations of potentially toxic elements (Zn, Cu, Ni, Al) to levels near or below concern. These findings support the use of gasified biochar amendments to revegetate acid mine soils.


Assuntos
Carvão Vegetal , Poluentes do Solo/química , Concentração de Íons de Hidrogênio , Mineração , Poaceae , Solo , Madeira
11.
Chemosphere ; 347: 140688, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977530

RESUMO

Common isotherm and kinetic models cannot describe the pH-dependent sorption of heavy metal cations by biochar. In this paper, we evaluated a pH-dependent, equilibrium/kinetic model for describing the sorption of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) by poultry litter-derived biochar (PLB). We performed sorption experiments across a range of solution pH, initial metal concentration, and reaction time. The sorption of all five metals increased with increasing pH. For Cd, Cu, and Pb, kinetics experiments demonstrated that sorption rates were greater at pH 6.5 than at pH 4.5. For each metal, all sorption data were described using single set of four adjustable parameters. Sorption edge and isotherm data were well described with R2 > 0.93 in all cases. Time-dependent sorption was well described (R2 ≥ 0.90) for all metals except Pb (R2 = 0.77). We then used the best-fit model parameters to calculate linear distribution coefficients (KD) and equilibration times as a function of pH and initial solution concentration. These calculations provide a more robust way of characterizing biochar affinity for metal cations than Freundlich distribution coefficients or Langmuir sorption capacity. Because this model can characterize metal cation sorption by biochar across a wider range of reaction conditions than traditional isotherm or kinetic models, it is better suited for estimating metal cation/biochar interactions in engineered or natural systems.


Assuntos
Cádmio , Metais Pesados , Animais , Aves Domésticas , Chumbo , Concentração de Íons de Hidrogênio , Adsorção , Metais Pesados/química , Cátions , Cinética
12.
Sci Rep ; 14(1): 10231, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702407

RESUMO

Agricultural soils are increasingly undergoing inadvertent and purposeful exposures to engineered CeO2 nanoparticles (NPs), which can impact crops and root-associated microbial communities. However, interactions between NP concentration and exposure duration on plant-mediated responses of root-associated bacterial communities are not well understood. Soybeans seedlings were grown in soil with uncoated NPs added at concentrations of 0, 1 or 100 mg kg-1. Total soil exposure durations were either 190 days, starting 106 days before planting or 84 days with NP amendments coinciding with planting. We assessed plant development, bacterial diversity, differential abundance and inferred functional changes across rhizosphere, rhizoplane, and root tissue compartments. Plant non-monotonic dose responses were mirrored in bacterial communities. Most notably, effects were magnified in the rhizoplane under low-dose, short-exposures. Enriched metabolic pathways were primarily related to biosynthesis and degradation/utilization/assimilation, rather than responses to metals or oxidative stress. Our results indicate that plant-mediated bacterial responses were greater than direct NP impacts. Also, we identify needs for modeling non-monotonic legume stress responses that account for coinfection with mutualistic and parasitic bacteroids. Our findings provide new insights regarding effects of applications of soil amendments such as biosolids containing NPs or nano-enabled formulations used in cultivation of legumes and other crops.


Assuntos
Bactérias , Cério , Glycine max , Nanopartículas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Glycine max/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Solo/química
13.
Biochar ; 5(64): 1-14, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38269399

RESUMO

Biochars with a high affinity for phosphorus (P) are promising soil amendments for reducing P in agricultural run-off. Poultry litter (PL) is an abundant biochar feedstock. However, PL-derived biochars are typically high in soluble P and therefore require chemical modification to become effective P sorbents. This study investigated the effect of magnesium (Mg) activation on extractable P (EP) and P sorption capacities of PL-derived biochars. Biochar was produced at 500-900 °C from PL activated with 0-1 M Mg. Three differentially aged PL feedstocks were evaluated (1-, 3-5-, and 7-9-year-old). Increased Mg activation level and pyrolysis temperature both resulted in EP reductions from the biochars. Specifically, biochars produced at temperatures ≥ 700 °C from PL activated with ≥ 0.25 M Mg had negligible EP. X-ray diffractograms indicated that increased Mg loading favored the formation of stable Mg3(PO4)2 phases while increasing temperature favored the formation of both Mg3(PO4)2 and Ca5(PO4)3OH. Maximum P sorption capacities (Pmax) of the biochars were estimated by fitting Langmuir isotherms to batch sorption data and ranged from 0.66-10.35 mg g-1. Average Pmax values were not affected by PL age or pyrolysis temperature; however, biochars produced from 1 M Mg-activated PL did have significantly higher average Pmax values (p < 0.05), likely due to a greater abundance of MgO. Overall, the results demonstrated that Mg activation is an effective strategy for producing PL-derived biochars with the potential ability to reduce P loading into environmentally sensitive ecosystems.

14.
Agrosyst Geosci Environ ; 6(3): 1-18, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38268614

RESUMO

To provide recommendations for establishment of plants on low-pH Formosa Mine tailings, two greenhouse experiments were conducted to evaluate the use of remedial amendments to improve the survival and growth of Douglas fir (Pseudotsuga menziesii) seedlings. A preliminary experiment indicated that 1% lime (by weight) raised tailings pH, permitting seedling survival. However, high rates of biosolid application (BS; 2% by weight) added to supply nutrients were phytotoxic when added with lime. A gasified conifer biochar (BC) added to tailings at 1%, 2.5%, or 5% (by weight), along with lime and BS, caused an additional increase in pH, decreased electrical conductivity (EC), and tended to increase the survival of Douglas fir. The addition of a locally sourced microbial inoculum (LSM) did not affect survival. A subsequent experiment expanded our experimental design by testing multiple levels of amendments that included lime (0.5% and 1% by weight), three application rates (0.2%, 0.5%, and 2%) of two nutrient sources (BS or mineral fertilizer), BC (0% and 2.5%), and with or without LSM. There were many interactions among amendments. In general, Douglas fir survival was enhanced when lime and BC were added. These experiments suggest that amending with lime, a nutrient source, and BC would enhance revegetation on low-pH, metal-contaminated mine tailings.

15.
Chemosphere ; 294: 133675, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066080

RESUMO

Biochar can reduce lead (Pb) bioavailability to plants in metal-contaminated soil, but the ability of biochar to reduce the bioavailability of soil Pb to people and wildlife remains unknown. In this study, 17 biochars were evaluated as in situ amendments for three soils with distinct sources of Pb contamination (smelter emissions, ceramics waste, mining waste), hydrology (upland, well-drained soil vs submerged wetland soil), and biological receptors (human vs waterfowl). Biochars were made from blends of 30% manure (poultry litter or dairy manure) and 70% lignocellulosic material (wheat straw or grand fir shavings) and pyrolyzed at 300, 500, 700, and 900 °C. Soils were amended with 2% biochar (w/w) and incubated for 6 months. A suite of standard (e.g., EPA Method 1340) and experimental soil Pb bioaccessibility assays were used to assess the impact of the treatments. The results showed that biochar amendments to upland soils resulted in modest reductions in gastrointestinal Pb bioaccessibility (maximum reduction from 78 to 68% bioaccessibility as a percent of total, EPA Method 1340 at pH 2.5). In the wetland soil, sample redox status had a greater impact on Pb bioaccessibility than any amendment. Low-solubility Pb sulfides in this soil oxidized over the course of the study and no treatment was able to offset the increase in Pb bioaccessibility caused by this oxidation. The impact of redox status on Pb bioaccessibility was only evident when soil bioaccessibility assays were adapted to preserve sample redox status. This result highlights the importance of maintaining in situ redox conditions when processing/analyzing samples from low-oxygen environments and that soil remediation efforts should consider the role of redox conditions on Pb bioaccessibility.


Assuntos
Poluentes do Solo , Solo , Carvão Vegetal , Humanos , Chumbo , Oxirredução , Poluentes do Solo/análise
16.
Environ Pollut ; 271: 116369, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33401216

RESUMO

Thousands of abandoned mines throughout the western region of North America contain elevated total-mercury (THg) concentrations. Mercury is mobilized from these sites primarily due to erosion of particulate-bound Hg (THg-P). Organic matter-based soil amendments can promote vegetation growth on mine tailings, reducing erosion and subsequent loading of THg-P into downstream waterbodies. However, the introduction of a labile carbon source may stimulate microbial activity that can produce methylmercury (MeHg)-the more toxic and bioaccumulative form of Hg. Our objectives were to investigate how additions of different organic matter substrates impact Hg mobilization and methylation using a combination of field observations and controlled experiments. Field measurements of water, sediment, and porewater were collected downstream of the site and multi-year monitoring (and load calculations) were conducted at a downstream gaging station. MeHg production was assessed using stable isotope methylation assays and mesocosm experiments that were conducted using different types of organic carbon soil amendments mixed with materials from the mine site. The results showed that >80% of the THg mobilized from the mine was bound to particles and that >90% of the annual Hg loading occurred during the period of elevated discharge during spring snowmelt. Methylation rates varied between different types of soil amendments and were correlated with the components of excitation emission matrices (EEMs) associated with humic acid fractions of organic matter. The mesocosm experiments showed that under anoxic conditions carbon amendments to tailings could significantly increase porewater MeHg concentrations (up to 13 ± 3 ng/L). In addition, the carbon amendments significantly increased THg partitioning into porewater. Overall, these results indicate that soil amendment applications to reduce surface erosion at abandoned mine sites could be effective at reducing particulate Hg mobilization to downstream waterbodies; however, some types of carbon amendments can significantly increase Hg methylation as well as increase the mobilization of dissolved THg from the site.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Mercúrio/análise , América do Norte , Solo , Poluentes Químicos da Água/análise
17.
Microorganisms ; 9(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946145

RESUMO

Even after remediation, mining impacted soils can leave behind a landscape inhospitable to plant growth and containing residual heavy metals. While phytostabilization can be used to restore such sites by limiting heavy metal spread, it is reliant on soil capable of supporting plant growth. Manure-based biochars, coupled with compost, have demonstrated the ability to improve soil growth conditions in mine impacted soils, however there is a paucity of information regarding their influence on resident microbial populations. The objective of this study was to elucidate the impact of these soil amendments on microbial community structure and function in mine impacted soils placed under phytostabilization management with maize. To this aim, a combination of phospholipid fatty acid (PLFA) and enzymatic analyses were performed. Results indicate that microbial biomass is significantly increased upon addition of biochar and compost, with maximal microbial biomass achieved with 5% poultry litter biochar and compost (62.82 nmol g-1 dry soil). Microbial community structure was impacted by biochar type, rate of application, and compost addition, and influenced by pH (r2 = 0.778), EC (r2 = 0.467), and Mg soil concentrations (r2 = 0.453). In three of the four enzymes analyzed, poultry litter biochar treatments were observed with increased activity rates that were often significantly greater than the unamended control. Overall, enzyme activities rates were influenced by biochar type and rate, and addition of compost. These results suggest that using a combination of biochar and compost can be utilized as a management tool to support phytostabilization strategies in mining impacted soils.

18.
Environ Toxicol Chem ; 40(12): 3351-3368, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551151

RESUMO

Micronized copper (Cu) azole (MCA) wood preservative formulations include Cu in nano form, and relatively little is known about longer term effects of Cu leached from MCA into wetland ecosystems. We tested the hypothesis that changes in soil microbiomes within reconstructed freshwater wetlands will be associated with exposure to elevated Cu concentrations originating from immersed MCA-treated wood stakes. Eight replicate communities were assembled with Willamette Valley (OR, USA) flood plain soil and clonally propagated wetland plants within mesocosms. Inundated communities were equilibrated for 5 months before installation of MCA or control southern yellow pine stakes (n = 4 communities/experimental group). Soil samples were collected for 16S and internal transcribed spacer amplicon sequencing to quantify responses in prokaryotes and eukaryotes, respectively, at 15 time points, spanning two simulated seasonal dry downs, for up to 678 days. Physiochemical properties of water and soil were monitored at 20 and 12 time points respectively, over the same period. For both taxonomic groups of organisms, phylogenetic diversity increased and was positively correlated with elapsed days. Furthermore, there was significant divergence among eukaryotes during the second year based on experimental group. Although the composition of taxa underwent succession over time, there was significantly reduced relative abundance of sequence variants from Gomphonema diatoms and Scutellinia fungi in communities where MCA wood stakes were present compared with the controls. These focused microbiome shifts were positively correlated with surface water Cu and soil Cu concentrations, which were significantly elevated in treated communities. The reconstructed communities were effective systems for assessing potential impacts to wetland microbiomes after exposure to released copper. The results further inform postcommercialization risk assessments on MCA-treated wood. Environ Toxicol Chem 2021;40:3351-3368. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Microbiota , Madeira , Azóis , Cobre/análise , Cobre/toxicidade , Filogenia , Solo , Áreas Alagadas , Madeira/química
19.
Biochar ; 3: 299-314, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35128320

RESUMO

The Oronogo-Duenweg mining belt is a designated United States Environmental Protection Agency Superfund site due to lead-contaminated soil and groundwater by former mining and smelting operations. Sites that have undergone remediation - in which the O, A, and B horizons have been removed alongside the lead contamination - have an exposed C horizon and are incalcitrant to revegetation efforts. Soils also continue to contain quantifiable Cd and Zn concentrations. In order to improve soil conditions and encourage successful site revegetation, our study employed three biochars, sourced from different feedstocks (poultry litter, beef lot manure, and lodge pole pine), at two rates of application (2.5%, and 5%), coupled with compost (0%, 2.5% and 5% application rates). Two plant species - switchgrass (Panicum virgatum) and buffalograss (Bouteloua dactyloides) - were grown in the amended soils. Amendment of soils with poultry litter biochar applied at 5% resulted in the greatest reduction of soil bioavailable Cd and Zn. Above ground biomass yields were greatest with beef lot manure biochar applied at 2.5% with 5% compost, or with 5% biochar at 2.5% and 5% compost rates. Maximal microbial biomass was achieved with 5% poultry litter biochar and 5% compost, and microbial communities in soils amended with poultry litter biochar distinctly clustered away from all other soil treatments. Additionally, poultry litter biochar amended soils had the highest enzyme activity rates for ß-glucosidase, N-acetyl-ß-D-glucosaminidase, and esterase. These results suggest that soil reclamation using biochar and compost can improve mine-impacted soil biogeophysical characteristics, and potentially improve future remediation efforts.

20.
Agrosyst Geosci Environ ; 3(1): 1-22, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35875186

RESUMO

To address the need for information on biochar effects on crop growth and nitrogen (N), a greenhouse study was conducted with carrot, lettuce, soybean, and sweet corn using sandy loam (Coxville series) and loamy sand (Norfolk series) soils and a variety of biochars. Biochar was produced from pine chips (PC), poultry litter (PL), swine solids (SS), switchgrass (SG), and two blends of PC plus PL (50/50% [55] and 80/20% [82], wt/wt), with each feedstock pyrolyzed at 350, 500, or 700 °C. The results confirmed that biochar can increase crop growth; however, the responses varied with crop, soil, and feedstock and to a lesser extent with pyrolysis temperature. In general, lettuce had large increases in shoot and root dry weights vs. no-biochar controls with many biochars, primarily the SS and 55 blend and to a lesser extent with 82 followed by PL, and then PC and SG, especially when grown in the Coxville soil. Biochar had more limited effects on carrot, sweet corn, and soybean weights. Some biochars decreased crop growth (e.g., PL at 700 °C) for soybean shoot and pod dry weights with the Norfolk soil. Shoot N concentrations decreased with SS, 55, and 82 for carrot, lettuce, and sweet corn with the Norfolk soil but tended to increase for soybean. Shoot N uptake increased or decreased depending on biochar feedstock and temperature, crop, and soil. These results confirm that biochar can increase crop growth and affect shoot N, which is essential for crop growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA