Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(27): 32307-32315, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181397

RESUMO

Cracks typically deteriorate the structural and electrical properties of materials when not properly controlled. A few papers recently reported the controlling methods of crack formation in the brittle materials utilizing the lateral V-notch structure. For ductile materials, however, there have been few papers reporting cracking phenomenon, but full cracking control including predesigned initiation, propagation, and termination has not been reported yet. Therefore, we report a predesigned full cracking control in ductile conductive carbon nanotube (CNT) films by introducing inkjet-printed L-shape micronotch (LMN) structures inspired by directional stamp perforation marks. In spite of the high fracture toughness of CNT films, the LMNs determine locations of initial crack formation and guide crack propagation in a predesigned way. Selective connection of isolated cracks in the CNT film increases its resistance monotonically under tensile strain and thus tremendously well maintains high linearity (adj. R2 value > 0.99) in resistance change over record large strain ranges of 0.01-100%, which enables us to quantitatively classify strain values accurately for previously reported practical body signals for the first time. We believe that our facile printing-based crack control strategy not only provides a comprehensive solution to various stretchable sensor applications but also builds a new milestone for cracking mechanism studies in fracture mechanics.

2.
Adv Sci (Weinh) ; 6(5): 1801682, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886798

RESUMO

Precise monitoring of human body signals can be achieved by soft, conformal contact and precise arrangement of wearable devices to the desired body positions. So far, no design and fabrication methodology in soft wearable devices is able to address the variations in the form factor of the human body such as the various sizes and shapes of individual body parts, which can significantly cause misalignments and the corresponding inaccurate monitoring. Here, a concept of soft modular electronic blocks (SMEBs) enabling the assembly of soft wearable systems onto human skin with functions and layouts tailored to the form factors of individuals' bodies is presented. Three types of SMEBs are developed as fundamental building blocks for functional modularization. The physical design of SMEBs is optimized for a mechanically stable island-bridge configuration. The prepared SMEBs can be integrated onto a target body part through rapid, room-temperature (RT) assembly (<5 s) using an oxygen plasma-induced siloxane bonding method. A soft metacarpophalangeal (MP) joints flexion monitoring system that is tailored to allow for accurate monitoring for multiple individuals with unique joint and hand sizes is demonstrated.

3.
Nanoscale ; 7(14): 6208-15, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25779911

RESUMO

The development of highly sensitive pressure sensors with a low-cost and facile fabrication technique is desirable for electronic skins and wearable sensing devices. Here a low-cost and facile fabrication strategy to obtain multiscale-structured elastomeric electrodes and a highly sensitive and robust flexible pressure sensor is presented. The principles of spontaneous buckle formation of the PDMS surface and the embedding of silver nanowires are used to fabricate the multiscale-structured elastomeric electrode. By laminating the multiscale-structured elastomeric electrode onto the dielectric layer/bottom electrode template, the pressure sensor can be obtained. The pressure sensor is based on the capacitive sensing mechanism and shows high sensitivity (>3.8 kPa(-1)), fast response and relaxation time (<150 ms), high bending stability and high cycle stability. The fabrication process can be easily scaled up to produce pressure sensor arrays and they can detect the spatial distribution of the applied pressure. It is also demonstrated that the fingertip pressure sensing device can sense the pressure distribution of each finger, when grabbing an object.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA