Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.058
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(14): 2523-2541.e30, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35738284

RESUMO

Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.


Assuntos
Vírus Hendra , Vírus Nipah , Células-Tronco Pluripotentes , Artérias , Células Endoteliais , Vírus Hendra/genética , Humanos , Tropismo
2.
Immunity ; 54(3): 586-602.e8, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33691136

RESUMO

To identify disease-relevant T cell receptors (TCRs) with shared antigen specificity, we analyzed 778,938 TCRß chain sequences from 178 non-small cell lung cancer patients using the GLIPH2 (grouping of lymphocyte interactions with paratope hotspots 2) algorithm. We identified over 66,000 shared specificity groups, of which 435 were clonally expanded and enriched in tumors compared to adjacent lung. The antigenic epitopes of one such tumor-enriched specificity group were identified using a yeast peptide-HLA A∗02:01 display library. These included a peptide from the epithelial protein TMEM161A, which is overexpressed in tumors and cross-reactive epitopes from Epstein-Barr virus and E. coli. Our findings suggest that this cross-reactivity may underlie the presence of virus-specific T cells in tumor infiltrates and that pathogen cross-reactivity may be a feature of multiple cancers. The approach and analytical pipelines generated in this work, as well as the specificity groups defined here, present a resource for understanding the T cell response in cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Mapeamento de Epitopos/métodos , Epitopos de Linfócito T/genética , Neoplasias Pulmonares/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/imunologia , Algoritmos , Apresentação de Antígeno , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Reações Cruzadas , Epitopos de Linfócito T/metabolismo , Antígeno HLA-A2/metabolismo , Humanos , Ligação Proteica , Especificidade do Receptor de Antígeno de Linfócitos T
3.
Nature ; 619(7971): 860-867, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468622

RESUMO

Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells1. Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)-induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.


Assuntos
Adenocarcinoma de Pulmão , Reprogramação Celular , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Células-Tronco , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Reprogramação Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
4.
Nature ; 619(7971): 851-859, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468633

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide1. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis1-4, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation. Using mice that express oncogenic Kras and null, wild-type or hypermorphic Trp53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. RNA sequencing and ATAC sequencing of LUAD cells uncovered a p53-induced AT1 differentiation programme during tumour suppression in vivo through direct DNA binding, chromatin remodelling and induction of genes characteristic of AT1 cells. Single-cell transcriptomics analyses revealed that during LUAD evolution, p53 promotes AT1 differentiation through action in a transitional cell state analogous to a transient intermediary seen during AT2-to-AT1 cell differentiation in alveolar injury repair. Notably, p53 inactivation results in the inappropriate persistence of these transitional cancer cells accompanied by upregulated growth signalling and divergence from lung lineage identity, characteristics associated with LUAD progression. Analysis of Trp53 wild-type and Trp53-null mice showed that p53 also directs alveolar regeneration after injury by regulating AT2 cell self-renewal and promoting transitional cell differentiation into AT1 cells. Collectively, these findings illuminate mechanisms of p53-mediated LUAD suppression, in which p53 governs alveolar differentiation, and suggest that tumour suppression reflects a fundamental role of p53 in orchestrating tissue repair after injury.


Assuntos
Células Epiteliais Alveolares , Diferenciação Celular , Neoplasias Pulmonares , Pulmão , Proteína Supressora de Tumor p53 , Animais , Camundongos , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Camundongos Knockout , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Alelos , Perfilação da Expressão Gênica , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Progressão da Doença , Linhagem da Célula , Regeneração , Autorrenovação Celular
5.
Nature ; 624(7991): 415-424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092908

RESUMO

The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.


Assuntos
Evolução Biológica , Neurônios , Retina , Vertebrados , Visão Ocular , Animais , Humanos , Neurônios/classificação , Neurônios/citologia , Neurônios/fisiologia , Retina/citologia , Retina/fisiologia , Células Ganglionares da Retina/classificação , Análise da Expressão Gênica de Célula Única , Vertebrados/fisiologia , Visão Ocular/fisiologia , Especificidade da Espécie , Células Amácrinas/classificação , Células Fotorreceptoras/classificação , Células Ependimogliais/classificação , Células Bipolares da Retina/classificação , Percepção Visual
6.
Genes Dev ; 34(17-18): 1210-1226, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820040

RESUMO

Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer characterized by initial chemosensitivity followed by emergence of chemoresistant disease. To study roles for MYCN amplification in SCLC progression and chemoresistance, we developed a genetically engineered mouse model of MYCN-overexpressing SCLC. In treatment-naïve mice, MYCN overexpression promoted cell cycle progression, suppressed infiltration of cytotoxic T cells, and accelerated SCLC. MYCN overexpression also suppressed response to cisplatin-etoposide chemotherapy, with similar findings made upon MYCL overexpression. We extended these data to genetically perturb chemosensitive patient-derived xenograft (PDX) models of SCLC. In chemosensitive PDX models, overexpression of either MYCN or MYCL also conferred a switch to chemoresistance. To identify therapeutic strategies for MYCN-overexpressing SCLC, we performed a genome-scale CRISPR-Cas9 sgRNA screen. We identified the deubiquitinase USP7 as a MYCN-associated synthetic vulnerability. Pharmacological inhibition of USP7 resensitized chemoresistant MYCN-overexpressing PDX models to chemotherapy in vivo. Our findings show that MYCN overexpression drives SCLC chemoresistance and provide a therapeutic strategy to restore chemosensitivity.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Carcinoma de Pequenas Células do Pulmão/enzimologia , Carcinoma de Pequenas Células do Pulmão/genética
7.
Mol Cell ; 76(6): 909-921.e3, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31676231

RESUMO

Metabolic signaling to chromatin often underlies how adaptive transcriptional responses are controlled. While intermediary metabolites serve as co-factors for histone-modifying enzymes during metabolic flux, how these modifications contribute to transcriptional responses is poorly understood. Here, we utilize the highly synchronized yeast metabolic cycle (YMC) and find that fatty acid ß-oxidation genes are periodically expressed coincident with the ß-oxidation byproduct histone crotonylation. Specifically, we found that H3K9 crotonylation peaks when H3K9 acetylation declines and energy resources become limited. During this metabolic state, pro-growth gene expression is dampened; however, mutation of the Taf14 YEATS domain, a H3K9 crotonylation reader, results in de-repression of these genes. Conversely, exogenous addition of crotonic acid results in increased histone crotonylation, constitutive repression of pro-growth genes, and disrupted YMC oscillations. Together, our findings expose an unexpected link between metabolic flux and transcription and demonstrate that histone crotonylation and Taf14 participate in the repression of energy-demanding gene expression.


Assuntos
Acil Coenzima A/metabolismo , Metabolismo Energético , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Histonas/genética , Homeostase , Lisina , Oxirredução , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fator de Transcrição TFIID/genética , Transcrição Gênica
8.
N Engl J Med ; 388(7): 621-634, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36791162

RESUMO

BACKGROUND: Safe and effective vaccines against coronavirus disease 2019 (Covid-19) are urgently needed in young children. METHODS: We conducted a phase 1 dose-finding study and are conducting an ongoing phase 2-3 safety, immunogenicity, and efficacy trial of the BNT162b2 vaccine in healthy children 6 months to 11 years of age. We present results for children 6 months to less than 2 years of age and those 2 to 4 years of age through the data-cutoff dates (April 29, 2022, for safety and immunogenicity and June 17, 2022, for efficacy). In the phase 2-3 trial, participants were randomly assigned (in a 2:1 ratio) to receive two 3-µg doses of BNT162b2 or placebo. On the basis of preliminary immunogenicity results, a third 3-µg dose (≥8 weeks after dose 2) was administered starting in January 2022, which coincided with the emergence of the B.1.1.529 (omicron) variant. Immune responses at 1 month after doses 2 and 3 in children 6 months to less than 2 years of age and those 2 to 4 years of age were immunologically bridged to responses after dose 2 in persons 16 to 25 years of age who received 30 µg of BNT162b2 in the pivotal trial. RESULTS: During the phase 1 dose-finding study, two doses of BNT162b2 were administered 21 days apart to 16 children 6 months to less than 2 years of age (3-µg dose) and 48 children 2 to 4 years of age (3-µg or 10-µg dose). The 3-µg dose level was selected for the phase 2-3 trial; 1178 children 6 months to less than 2 years of age and 1835 children 2 to 4 years of age received BNT162b2, and 598 and 915, respectively, received placebo. Immunobridging success criteria for the geometric mean ratio and seroresponse at 1 month after dose 3 were met in both age groups. BNT162b2 reactogenicity events were mostly mild to moderate, with no grade 4 events. Low, similar incidences of fever were reported after receipt of BNT162b2 (7% among children 6 months to <2 years of age and 5% among those 2 to 4 years of age) and placebo (6 to 7% among children 6 months to <2 years of age and 4 to 5% among those 2 to 4 years of age). The observed overall vaccine efficacy against symptomatic Covid-19 in children 6 months to 4 years of age was 73.2% (95% confidence interval, 43.8 to 87.6) from 7 days after dose 3 (on the basis of 34 cases). CONCLUSIONS: A three-dose primary series of 3-µg BNT162b2 was safe, immunogenic, and efficacious in children 6 months to 4 years of age. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04816643.).


Assuntos
Vacina BNT162 , COVID-19 , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/efeitos adversos , Vacina BNT162/imunologia , Vacina BNT162/uso terapêutico , COVID-19/sangue , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacinas/efeitos adversos , Vacinas/uso terapêutico , Imunogenicidade da Vacina , Resultado do Tratamento , Eficácia de Vacinas
9.
Immunity ; 47(4): 766-775.e3, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045905

RESUMO

The latent reservoir for HIV-1 in resting memory CD4+ T cells is the major barrier to curing HIV-1 infection. Studies of HIV-1 latency have focused on regulation of viral gene expression in cells in which latent infection is established. However, it remains unclear how infection initially becomes latent. Here we described a unique set of properties of CD4+ T cells undergoing effector-to-memory transition including temporary upregulation of CCR5 expression and rapid downregulation of cellular gene transcription. These cells allowed completion of steps in the HIV-1 life cycle through integration but suppressed HIV-1 gene transcription, thus allowing the establishment of latency. CD4+ T cells in this stage were substantially more permissive for HIV-1 latent infection than other CD4+ T cells. Establishment of latent HIV-1 infection in CD4+ T could be inhibited by viral-specific CD8+ T cells, a result with implications for elimination of latent HIV-1 infection by T cell-based vaccines.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Reprogramação Celular/imunologia , HIV-1/imunologia , Memória Imunológica/imunologia , Transcrição Gênica , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Reprogramação Celular/genética , Citocinas/genética , Citocinas/imunologia , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica/métodos , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Memória Imunológica/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Latência Viral/imunologia , Replicação Viral/imunologia
10.
EMBO Rep ; 25(8): 3240-3262, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39026010

RESUMO

The monomer-binding protein profilin 1 (PFN1) plays a crucial role in actin polymerization. However, mutations in PFN1 are also linked to hereditary amyotrophic lateral sclerosis, resulting in a broad range of cellular pathologies which cannot be explained by its primary function as a cytosolic actin assembly factor. This implies that there are important, undiscovered roles for PFN1 in cellular physiology. Here we screened knockout cells for novel phenotypes associated with PFN1 loss of function and discovered that mitophagy was significantly upregulated. Indeed, despite successful autophagosome formation, fusion with the lysosome, and activation of additional mitochondrial quality control pathways, PFN1 knockout cells accumulate depolarized, dysmorphic mitochondria with altered metabolic properties. Surprisingly, we also discovered that PFN1 is present inside mitochondria and provide evidence that mitochondrial defects associated with PFN1 loss are not caused by reduced actin polymerization in the cytosol. These findings suggest a previously unrecognized role for PFN1 in maintaining mitochondrial integrity and highlight new pathogenic mechanisms that can result from PFN1 dysregulation.


Assuntos
Actinas , Mitocôndrias , Profilinas , Profilinas/metabolismo , Profilinas/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Humanos , Actinas/metabolismo , Mitofagia/genética , Lisossomos/metabolismo , Citosol/metabolismo , Técnicas de Inativação de Genes , Autofagossomos/metabolismo , Células HeLa
11.
Nature ; 587(7835): 619-625, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208946

RESUMO

Although single-cell RNA sequencing studies have begun to provide compendia of cell expression profiles1-9, it has been difficult to systematically identify and localize all molecular cell types in individual organs to create a full molecular cell atlas. Here, using droplet- and plate-based single-cell RNA sequencing of approximately 75,000 human cells across all lung tissue compartments and circulating blood, combined with a multi-pronged cell annotation approach, we create an extensive cell atlas of the human lung. We define the gene expression profiles and anatomical locations of 58 cell populations in the human lung, including 41 out of 45 previously known cell types and 14 previously unknown ones. This comprehensive molecular atlas identifies the biochemical functions of lung cells and the transcription factors and markers for making and monitoring them; defines the cell targets of circulating hormones and predicts local signalling interactions and immune cell homing; and identifies cell types that are directly affected by lung disease genes and respiratory viruses. By comparing human and mouse data, we identified 17 molecular cell types that have been gained or lost during lung evolution and others with substantially altered expression profiles, revealing extensive plasticity of cell types and cell-type-specific gene expression during organ evolution including expression switches between cell types. This atlas provides the molecular foundation for investigating how lung cell identities, functions and interactions are achieved in development and tissue engineering and altered in disease and evolution.


Assuntos
Células/classificação , Células/metabolismo , Imunidade , Pulmão/citologia , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma/genética , Idoso , Animais , Atlas como Assunto , Biomarcadores , Comunicação Celular , Células/imunologia , Quimiocinas/metabolismo , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Pulmão/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Receptores de Retorno de Linfócitos/metabolismo , Transdução de Sinais , Células Estromais/metabolismo
12.
Nature ; 580(7802): 245-251, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269342

RESUMO

Radiologic screening of high-risk adults reduces lung-cancer-related mortality1,2; however, a small minority of eligible individuals undergo such screening in the United States3,4. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)5, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed 'lung cancer likelihood in plasma' (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.


Assuntos
DNA Tumoral Circulante/análise , DNA Tumoral Circulante/genética , Detecção Precoce de Câncer/métodos , Genoma Humano/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutação , Estudos de Coortes , Feminino , Hematopoese/genética , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
13.
Nature ; 579(7798): 284-290, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103175

RESUMO

Cancer recurrence after surgery remains an unresolved clinical problem1-3. Myeloid cells derived from bone marrow contribute to the formation of the premetastatic microenvironment, which is required for disseminating tumour cells to engraft distant sites4-6. There are currently no effective interventions that prevent the formation of the premetastatic microenvironment6,7. Here we show that, after surgical removal of primary lung, breast and oesophageal cancers, low-dose adjuvant epigenetic therapy disrupts the premetastatic microenvironment and inhibits both the formation and growth of lung metastases through its selective effect on myeloid-derived suppressor cells (MDSCs). In mouse models of pulmonary metastases, MDSCs are key factors in the formation of the premetastatic microenvironment after resection of primary tumours. Adjuvant epigenetic therapy that uses low-dose DNA methyltransferase and histone deacetylase inhibitors, 5-azacytidine and entinostat, disrupts the premetastatic niche by inhibiting the trafficking of MDSCs through the downregulation of CCR2 and CXCR2, and by promoting MDSC differentiation into a more-interstitial macrophage-like phenotype. A decreased accumulation of MDSCs in the premetastatic lung produces longer periods of disease-free survival and increased overall survival, compared with chemotherapy. Our data demonstrate that, even after removal of the primary tumour, MDSCs contribute to the development of premetastatic niches and settlement of residual tumour cells. A combination of low-dose adjuvant epigenetic modifiers that disrupts this premetastatic microenvironment and inhibits metastases may permit an adjuvant approach to cancer therapy.


Assuntos
Epigênese Genética , Terapia Genética , Células Supressoras Mieloides/fisiologia , Neoplasias/terapia , Microambiente Tumoral , Animais , Azacitidina/farmacologia , Benzamidas/farmacologia , Diferenciação Celular , Movimento Celular/efeitos dos fármacos , Quimioterapia Adjuvante , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Camundongos , Células Supressoras Mieloides/citologia , Metástase Neoplásica/terapia , Neoplasias/cirurgia , Piridinas/farmacologia , Receptores CCR2/genética , Receptores de Interleucina-8B/genética , Microambiente Tumoral/efeitos dos fármacos
14.
Nature ; 586(7831): 749-756, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087929

RESUMO

The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.


Assuntos
Bases de Dados Genéticas , Sequenciamento do Exoma , Exoma/genética , Mutação com Perda de Função/genética , Fenótipo , Idoso , Densidade Óssea/genética , Colágeno Tipo VI/genética , Demografia , Feminino , Genes BRCA1 , Genes BRCA2 , Genótipo , Humanos , Canais Iônicos/genética , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Penetrância , Fragmentos de Peptídeos/genética , Reino Unido , Varizes/genética , Proteínas Ativadoras de ras GTPase/genética
15.
Proc Natl Acad Sci U S A ; 120(45): e2308214120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903272

RESUMO

Diabetic retinopathy (DR) is a neurovascular complication of diabetes. Recent investigations have suggested that early degeneration of the neuroretina may occur prior to the appearance of microvascular changes; however, the mechanisms underlying this neurodegeneration have been elusive. Microglia are the predominant resident immune cell in the retina and adopt dynamic roles in disease. Here, we show that ablation of retinal microglia ameliorates visual dysfunction and neurodegeneration in a type I diabetes mouse model. We also provide evidence of enhanced microglial contact and engulfment of amacrine cells, ultrastructural modifications, and transcriptome changes that drive inflammation and phagocytosis. We show that CD200-CD200R signaling between amacrine cells and microglia is dysregulated during early DR and that targeting CD200R can attenuate high glucose-induced inflammation and phagocytosis in cultured microglia. Last, we demonstrate that targeting CD200R in vivo can prevent visual dysfunction, microglia activation, and retinal inflammation in the diabetic mouse. These studies provide a molecular framework for the pivotal role that microglia play in early DR pathogenesis and identify a potential immunotherapeutic target for treating DR in patients.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Humanos , Camundongos , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Retina/metabolismo , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 120(44): e2314788120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871225

RESUMO

Nitrogenase is an active target of heterologous expression because of its importance for areas related to agronomy, energy, and environment. One major hurdle for expressing an active Mo-nitrogenase in Escherichia coli is to generate the complex metalloclusters (P- and M-clusters) within this enzyme, which involves some highly unique bioinorganic chemistry/metalloenzyme biochemistry that is not generally dealt with in the heterologous expression of proteins via synthetic biology; in particular, the heterologous synthesis of the homometallic P-cluster ([Fe8S7]) and M-cluster core (or L-cluster; [Fe8S9C]) on their respective protein scaffolds, which represents two crucial checkpoints along the biosynthetic pathway of a complete nitrogenase, has yet to be demonstrated by biochemical and spectroscopic analyses of purified metalloproteins. Here, we report the heterologous formation of a P-cluster-containing NifDK protein upon coexpression of Azotobacter vinelandii nifD, nifK, nifH, nifM, and nifZ genes, and that of an L-cluster-containing NifB protein upon coexpression of Methanosarcina acetivorans nifB, nifS, and nifU genes alongside the A. vinelandii fdxN gene, in E. coli. Our metal content, activity, EPR, and XAS/EXAFS data provide conclusive evidence for the successful synthesis of P- and L-clusters in a nondiazotrophic host, thereby highlighting the effectiveness of our metallocentric, divide-and-conquer approach that individually tackles the key events of nitrogenase biosynthesis prior to piecing them together into a complete pathway for the heterologous expression of nitrogenase. As such, this work paves the way for the transgenic expression of an active nitrogenase while providing an effective tool for further tackling the biosynthetic mechanism of this important metalloenzyme.


Assuntos
Azotobacter vinelandii , Metaloproteínas , Nitrogenase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fixação de Nitrogênio/genética , Oxirredutases/metabolismo , Metaloproteínas/metabolismo , Proteínas de Bactérias/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(2): e2204134120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595669

RESUMO

Many epithelial compartments undergo constitutive renewal in homeostasis but activate unique regenerative responses following injury. The clear corneal epithelium is crucial for vision and is renewed from limbal stem cells (LSCs). Using single-cell RNA sequencing, we profiled the mouse corneal epithelium in homeostasis, aging, diabetes, and dry eye disease (DED), where tear deficiency predisposes the cornea to recurrent injury. In homeostasis, we capture the transcriptional states that accomplish continuous tissue turnover. We leverage our dataset to identify candidate genes and gene networks that characterize key stages across homeostatic renewal, including markers for LSCs. In aging and diabetes, there were only mild changes with <15 dysregulated genes. The constitutive cell types that accomplish homeostatic renewal were conserved in DED but were associated with activation of cell states that comprise "adaptive regeneration." We provide global markers that distinguish cell types in homeostatic renewal vs. adaptive regeneration and markers that specifically define DED-elicited proliferating and differentiating cell types. We validate that expression of SPARC, a marker of adaptive regeneration, is also induced in corneal epithelial wound healing and accelerates wound closure in a corneal epithelial cell scratch assay. Finally, we propose a classification system for LSC markers based on their expression fidelity in homeostasis and disease. This transcriptional dissection uncovers the dramatically altered transcriptional landscape of the corneal epithelium in DED, providing a framework and atlas for future study of these ocular surface stem cells in health and disease.


Assuntos
Síndromes do Olho Seco , Epitélio Corneano , Limbo da Córnea , Camundongos , Animais , Limbo da Córnea/fisiologia , Diferenciação Celular/fisiologia , Córnea , Cicatrização/genética , Síndromes do Olho Seco/genética , Síndromes do Olho Seco/metabolismo , Homeostase/genética
18.
Trends Genet ; 38(9): 885-888, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660028

RESUMO

Phenome-wide association studies (PheWASs), a powerful approach that examines phenotypes associated with a genetic marker, have been used extensively in highly developed countries. Although there may be a clear need for PheWAS in a developing country such as the Philippines, limitations related to resources and practicality would make conducting them a challenge.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Países em Desenvolvimento , Fenótipo
19.
N Engl J Med ; 386(1): 35-46, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34752019

RESUMO

BACKGROUND: Safe, effective vaccines against coronavirus disease 2019 (Covid-19) are urgently needed in children younger than 12 years of age. METHODS: A phase 1, dose-finding study and an ongoing phase 2-3 randomized trial are being conducted to investigate the safety, immunogenicity, and efficacy of two doses of the BNT162b2 vaccine administered 21 days apart in children 6 months to 11 years of age. We present results for 5-to-11-year-old children. In the phase 2-3 trial, participants were randomly assigned in a 2:1 ratio to receive two doses of either the BNT162b2 vaccine at the dose level identified during the open-label phase 1 study or placebo. Immune responses 1 month after the second dose of BNT162b2 were immunologically bridged to those in 16-to-25-year-olds from the pivotal trial of two 30-µg doses of BNT162b2. Vaccine efficacy against Covid-19 at 7 days or more after the second dose was assessed. RESULTS: During the phase 1 study, a total of 48 children 5 to 11 years of age received 10 µg, 20 µg, or 30 µg of the BNT162b2 vaccine (16 children at each dose level). On the basis of reactogenicity and immunogenicity, a dose level of 10 µg was selected for further study. In the phase 2-3 trial, a total of 2268 children were randomly assigned to receive the BNT162b2 vaccine (1517 children) or placebo (751 children). At data cutoff, the median follow-up was 2.3 months. In the 5-to-11-year-olds, as in other age groups, the BNT162b2 vaccine had a favorable safety profile. No vaccine-related serious adverse events were noted. One month after the second dose, the geometric mean ratio of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing titers in 5-to-11-year-olds to those in 16-to-25-year-olds was 1.04 (95% confidence interval [CI], 0.93 to 1.18), a ratio meeting the prespecified immunogenicity success criterion (lower bound of two-sided 95% CI, >0.67; geometric mean ratio point estimate, ≥0.8). Covid-19 with onset 7 days or more after the second dose was reported in three recipients of the BNT162b2 vaccine and in 16 placebo recipients (vaccine efficacy, 90.7%; 95% CI, 67.7 to 98.3). CONCLUSIONS: A Covid-19 vaccination regimen consisting of two 10-µg doses of BNT162b2 administered 21 days apart was found to be safe, immunogenic, and efficacious in children 5 to 11 years of age. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04816643.).

20.
J Virol ; : e0116724, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230302

RESUMO

Cytomegalovirus (CMV)-seropositive adults have large T cell responses to a wide range of CMV proteins; these responses have been associated with chronic inflammation and frailty in people with or without HIV infection. We analyzed the relationships between chronic HIV infection, frailty, and the breadth and polyfunctionality of CD4 and CD8 T cell responses to CMV. Peripheral blood mononuclear cells from 42 men (20 without HIV and 22 with virologically suppressed HIV) in the Multicenter AIDS Cohort Study (MACS) were stimulated with peptide pools spanning 19 CMV open reading frames (ORFs). As measured by flow cytometry and intracellular cytokine staining for IFN-γ, TNF-α, and IL-2, CD8 T cells from men with HIV responded to significantly more CMV ORFs than those from men without HIV. This was primarily due to a broader response to ORFs that are expressed during the late phase of CMV replication. The number of ORFs to which a participant's T cells responded was positively correlated with the sum of all that individual's T cell responses; these correlations were weaker in men with than without HIV. Polyfunctional CMV-specific CD4 responses (production of more than one cytokine) were significantly lower in men with than without HIV. Frailty status did not substantially affect the breadth or magnitude of the CMV-specific T cell responses. These results suggest that immune control of CMV infection is affected more by chronic HIV infection than by frailty. The differences between men with and without HIV were similar to those reported between young and older adults without HIV. IMPORTANCE: T cell responses to chronic cytomegalovirus (CMV) infection have significant biological and clinical implications in HIV infection and aging. Here, we systematically analyzed the breadth, magnitude, and polyfunctionality of T cell responses to multiple CMV antigens in men with and without HIV in the Multicenter AIDS Cohort Study (MACS), a longstanding study of the natural and treated history of HIV-1 infection in men who have sex with men. We found that the breadth and polyfunctionality of T cell responses to CMV were different between men with chronic, treated HIV and those without HIV. The reason for these differences is unknown, but these findings suggest that people with treated HIV may have more frequent CMV reactivation than people without HIV. Differences between people with and without HIV also resembled differences reported between young and older adults without HIV, supporting a role for the immune responses to CMV in the aging process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA