Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biochemistry ; 63(1): 107-115, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38081770

RESUMO

The encephalomyocarditis virus internal ribosome entry site (EMCV IRES) is a structured RNA sequence found in the 5' UTR of the genomic RNA of the encephalomyocarditis virus. The EMCV IRES structure facilitates efficient translation initiation without needing a 5' m7G cap or the cap-binding protein eIF4E. The secondary structure of IRES has been the subject of several previous studies, and a number of different structural models have been proposed. Though some domains of the IRES are conserved across the different secondary structure models, domain I of the IRES varies greatly across them. A literature comparison led to the identification of three regions of interest that display structural heterogeneity within past secondary structure models. To test the accuracy of the secondary structure models in these regions, we employed mutational analysis and SHAPE probing. Mutational analysis revealed that two helical regions within the identified regions of interest are important for IRES translation. These helical regions are consistent with only one of the structure predictions in the literature and do not form in EMCV IRES structures predicted using modern secondary structure prediction methods. The importance of these regions is further supported by multiple SHAPE protections when probing was performed after in vitro translation, indicating that these regions are involved in the IRES translation complex. This work validates a published structure and demonstrates the importance of domain I during EMCV IRES translation initiation.


Assuntos
Vírus da Encefalomiocardite , Sítios Internos de Entrada Ribossomal , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/metabolismo , Sequência de Bases , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo
2.
Nucleic Acids Res ; 49(12): 7103-7121, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34161584

RESUMO

The specific recognition of splice signals at or near exon-intron junctions is not explained by their weak conservation and instead is postulated to require a multitude of features embedded in the pre-mRNA strand. We explored the possibility of 3D structural scaffold of AdML-a model pre-mRNA substrate-guiding early spliceosomal components to the splice signal sequences. We find that mutations in the non-cognate splice signal sequences impede recruitment of early spliceosomal components due to disruption of the global structure of the pre-mRNA. We further find that the pre-mRNA segments potentially interacting with the early spliceosomal component U1 snRNP are distributed across the intron, that there is a spatial proximity of 5' and 3' splice sites within the pre-mRNA scaffold, and that an interplay exists between the structural scaffold and splicing regulatory elements in recruiting early spliceosomal components. These results suggest that early spliceosomal components can recognize a 3D structural scaffold beyond the short splice signal sequences, and that in our model pre-mRNA, this scaffold is formed across the intron involving the major splice signals. This provides a conceptual basis to analyze the contribution of recognizable 3D structural scaffolds to the splicing code across the mammalian transcriptome.


Assuntos
Precursores de RNA/química , Splicing de RNA , RNA Mensageiro/química , Células HeLa , Humanos , Íntrons , Mutação , Conformação de Ácido Nucleico , Domínios Proteicos , Precursores de RNA/metabolismo , Sítios de Splice de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/metabolismo , Fator de Processamento U2AF/metabolismo
3.
Biochemistry ; 61(14): 1485-1494, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35797022

RESUMO

The influenza A virus (IAV) is responsible for seasonal epidemics that result in hundreds of thousands of deaths worldwide annually. The non-structural protein 1 (NS1) of the IAV inflicts various antagonistic processes on the host during infection. These processes include inhibition of the host interferon system, inhibition of the apoptotic response, and enhancement of viral mRNA translation, all of which contribute to the overall virulence of the IAV. Although the mechanism by which NS1 stimulates translation is unknown, NS1 has been shown to bind both poly-A binding Protein 1 and eukaryotic initiation factor 4 gamma 1 (eIF4G1), two proteins necessary for cap-dependent translation. We directly analyzed the interaction between NS1 and eIF4G1 within the context of the 5'-m7G-mRNA·eIF4E·eIF4G1 complex. Interestingly, our studies show that NS1 can bind this complex in the presence or absence of 5'-m7G-mRNA. Additionally, we were interested in investigating whether NS1 interacts with eIF4E directly. Our results indicate that NS1 can bind to eIF4E only in the absence of 5'-m7G-mRNA. Considering previous data, we propose that NS1 stimulates translation by binding to eIF4G1 and recruiting the 43S pre-translation initiation complex to the mRNA.


Assuntos
Fator de Iniciação 4E em Eucariotos , Vírus da Influenza A , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Interferons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
4.
Biochemistry ; 61(12): 1199-1212, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35653700

RESUMO

The fragile X proteins (FXPs) are a family of RNA-binding proteins that regulate mRNA translation to promote proper neural development and cognition in mammals. Of particular interest to researchers is the fragile X mental retardation protein (FMRP), as its absence leads to a neurodevelopmental disorder: fragile X syndrome (FXS), the leading monogenetic cause of autism spectrum disorders. A primary focus of research has been to determine mRNA targets of the FXPs in vivo through pull-down techniques, and to validate them through in vitro binding studies; another approach has been to perform in vitro selection experiments to identify RNA sequence and structural targets. These mRNA targets can be further investigated as potential targets for FXS therapeutics. The most established RNA structural target of this family of proteins is the G-quadruplex. In this article, we report a 99 nucleotide RNA target that is bound by all three FXPs with nanomolar equilibrium constants. Furthermore, we determined that the last 102 amino acids of FMRP, which includes the RGG motif, were necessary and sufficient to bind this RNA target. To the best of our knowledge, this is one of only a few examples of non-G-quadruplex, non-homopolymer RNAs bound by the RGG motif/C-termini of FMRP.


Assuntos
Síndrome do Cromossomo X Frágil , Quadruplex G , Animais , Proteína do X Frágil da Deficiência Intelectual/química , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Mamíferos/metabolismo , Biossíntese de Proteínas , RNA/metabolismo , RNA Mensageiro/metabolismo
5.
Chembiochem ; 23(5): e202100624, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936727

RESUMO

All cells use organized lipid compartments to facilitate specific biological functions. Membrane-bound organelles create defined spatial environments that favor unique chemical reactions while isolating incompatible biological processes. Despite the fundamental role of cellular organelles, there is a scarcity of methods for preparing functional artificial lipid-based compartments. Here, we demonstrate a robust bioconjugation system for sequestering proteins into zwitterionic lipid sponge phase droplets. Incorporation of benzylguanine (BG)-modified phospholipids that form stable covalent linkages with an O6 -methylguanine DNA methyltransferase (SNAP-tag) fusion protein enables programmable control of protein capture. We show that this methodology can be used to anchor hydrophilic proteins at the lipid-aqueous interface, concentrating them within an accessible but protected chemical environment. SNAP-tag technology enables the integration of proteins that regulate complex biological functions in lipid sponge phase droplets, and should facilitate the development of advanced lipid-based artificial organelles.


Assuntos
Gotículas Lipídicas , O(6)-Metilguanina-DNA Metiltransferase , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Fosfolipídeos , Proteínas
6.
Mol Cell ; 54(3): 407-417, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24746697

RESUMO

Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused by loss of function of the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is involved in the translational regulation of several neuronal mRNAs. However, the precise mechanism of translational inhibition by FMRP is unknown. Here, we show that FMRP inhibits translation by binding directly to the L5 protein on the 80S ribosome. Furthermore, cryoelectron microscopic reconstruction of the 80S ribosome⋅FMRP complex shows that FMRP binds within the intersubunit space of the ribosome such that it would preclude the binding of tRNA and translation elongation factors on the ribosome. These findings suggest that FMRP inhibits translation by blocking the essential components of the translational machinery from binding to the ribosome.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Regulação da Expressão Gênica , Iniciação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila/química , Drosophila melanogaster/genética , Proteína do X Frágil da Deficiência Intelectual/química , Quadruplex G , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química
7.
Proc Natl Acad Sci U S A ; 115(3): E382-E389, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29298914

RESUMO

Termination of protein synthesis is triggered by the recognition of a stop codon at the ribosomal A site and is mediated by class I release factors (RFs). Whereas in bacteria, RF1 and RF2 promote termination at UAA/UAG and UAA/UGA stop codons, respectively, eukaryotes only depend on one RF (eRF1) to initiate peptide release at all three stop codons. Based on several structural as well as biochemical studies, interactions between mRNA, tRNA, and rRNA have been proposed to be required for stop codon recognition. In this study, the influence of these interactions was investigated by using chemically modified stop codons. Single functional groups within stop codon nucleotides were substituted to weaken or completely eliminate specific interactions between the respective mRNA and RFs. Our findings provide detailed insight into the recognition mode of bacterial and eukaryotic RFs, thereby revealing the chemical groups of nucleotides that define the identity of stop codons and provide the means to discriminate against noncognate stop codons or UGG sense codons.


Assuntos
Códon de Terminação/genética , Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/fisiologia , Proteínas de Escherichia coli/metabolismo , Mutagênese Sítio-Dirigida , Nucleotídeos , Terminação Traducional da Cadeia Peptídica , Biossíntese de Proteínas
8.
Biochemistry ; 59(40): 3813-3822, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32945655

RESUMO

The fragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates the translation of numerous mRNAs in neurons. The precise mechanism of translational regulation by FMRP is unknown. Some studies have indicated that FMRP inhibits the initiation step of translation, whereas other studies have indicated that the elongation step of translation is inhibited by FMRP. To determine whether FMRP inhibits the initiation or the elongation step of protein synthesis, we investigated m7G-cap-dependent and IRES-driven, cap-independent translation of several reporter mRNAs in vitro. Our results show that FMRP inhibits both m7G-cap-dependent and cap-independent translation to similar degrees, indicating that the elongation step of translation is inhibited by FMRP. Additionally, we dissected the RNA-binding domains of hFMRP to determine the essential domains for inhibiting translation. We show that the RGG domain, together with the C-terminal domain (CTD), is sufficient to inhibit translation, while the KH domains do not inhibit mRNA translation. However, the region between the RGG domain and the KH2 domain may contribute as NT-hFMRP shows more potent inhibition than the RGG-CTD tail alone. Interestingly, we see a correlation between ribosome binding and translation inhibition, suggesting the RGG-CTD tail of hFMRP may anchor FMRP to the ribosome during translation inhibition.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Elongação Traducional da Cadeia Peptídica , Proteína do X Frágil da Deficiência Intelectual/química , Humanos , Iniciação Traducional da Cadeia Peptídica , Ligação Proteica , Domínios Proteicos , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
9.
Biochemistry ; 59(46): 4439-4448, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33172261

RESUMO

Influenza A virus (IAV) is a highly contagious human pathogen that is responsible for tens of thousands of deaths each year. Non-structural protein 1 (NS1) is a crucial protein expressed by IAV to evade the host immune system. Additionally, NS1 has been proposed to stimulate translation because of its ability to bind poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G. We analyzed the interaction of NS1 with PABP1 using quantitative techniques. Our studies show that NS1 binds as a homodimer to PABP1, and this interaction is conserved across different IAV strains. Unexpectedly, NS1 does not bind to PABP1 that is bound to poly(A) RNA. Instead, NS1 binds only to PABP1 free of RNA, suggesting that stimulation of translation does not occur by NS1 interacting with the PABP1 molecule attached to the mRNA 3'-poly(A) tail. These results suggest that the function of the NS1·PABP1 complex appears to be distinct from the classical role of PABP1 in translation initiation, when it is bound to the 3'-poly(A) tail of mRNA.


Assuntos
Vírus da Influenza A/metabolismo , Poli A/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Polarização de Fluorescência , Interações Hospedeiro-Patógeno/fisiologia , Mutação , Poli A/química , Proteína I de Ligação a Poli(A)/genética , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Eletricidade Estática , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
10.
Biochemistry ; 57(26): 3590-3598, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29782795

RESUMO

Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.


Assuntos
Vírus da Influenza A Subtipo H3N2/metabolismo , Influenza Humana/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas não Estruturais Virais/metabolismo , Humanos , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Viral/metabolismo
11.
Anal Biochem ; 520: 62-67, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28017740

RESUMO

One of the most common assays for nucleoside triphosphatase (NTPase) activity entails the quantification of inorganic phosphate (Pi) as a colored phosphomolybdate complex at low pH. While this assay is very sensitive, it is not selective for Pi in the presence of labile organic phosphate compounds (OPCs). Since NTPase activity assays typically require a large excess of OPCs, such as nucleotides, selectivity for Pi in the presence of OPCs is often critical in evaluating enzyme activity. Here we present an improved method for the measurement of enzymatic nucleotide hydrolysis as Pi released, which achieves selectivity for Pi in the presence of OPCs while also avoiding the costs and hazards inherent in other methods for measuring nucleotide hydrolysis. We apply this method to the measurement of ATP hydrolysis by nitrogenase and GTP hydrolysis by elongation factor G (EF-G) in order to demonstrate the broad applicability of our method for the determination of nucleotide hydrolysis in the presence of interfering OPCs.


Assuntos
Colorimetria , Nucleosídeo-Trifosfatase/metabolismo , Fosfatos/metabolismo , Hidrólise , Molibdênio/análise , Molibdênio/química , Molibdênio/metabolismo , Fosfatos/análise , Ácidos Fosfóricos/análise , Ácidos Fosfóricos/metabolismo , Fósforo/química
12.
Proc Natl Acad Sci U S A ; 111(1): 225-30, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367071

RESUMO

We previously demonstrated that IκBα markedly increases the dissociation rate of DNA from NF-κB. The mechanism of this process remained a puzzle because no ternary complex was observed, and structures show that the DNA and IκBα binding sites on NF-κB are overlapping. The kinetics of interaction of IκBα with NF-κB and its complex with DNA were analyzed by using stopped-flow experiments in which fluorescence changes in pyrene-labeled DNA or the native tryptophan in IκBα were monitored. Rate constants governing the individual steps in the reaction were obtained from analysis of the measured rate vs. concentration profiles. The NF-κB association with DNA is extremely rapid with a rate constant of 1.5 × 10(8) M(-1)⋅s(-1). The NF-κB-DNA complex dissociates with a rate constant of 0.41 s(-1), yielding a KD of 2.8 nM. When IκBα is added to the NF-κB-DNA complex, we observe the formation of a transient ternary complex in the first few milliseconds of the fluorescence trace, which rapidly rearranges to release DNA. The rate constant of this IκBα-mediated dissociation is nearly equal to the rate constant of association of IκBα with the NF-κB-DNA complex, showing that IκBα is optimized to repress transcription. The rate constants for the individual steps of a more folded mutant IκBα were also measured. This mutant associates with NF-κB more rapidly than wild-type IκBα, but it associates with the NF-κB-DNA complex more slowly and also is less efficient at mediating dissociation of the NF-κB-DNA complex.


Assuntos
DNA/química , Regulação da Expressão Gênica , Proteínas I-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Núcleo Celular/metabolismo , Relação Dose-Resposta a Droga , Corantes Fluorescentes/química , Humanos , Proteínas I-kappa B/genética , Cinética , Microscopia de Fluorescência , Mutação , Inibidor de NF-kappaB alfa , Subunidade p50 de NF-kappa B/genética , Ligação Proteica , Conformação Proteica , Pirenos/química , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Ativação Transcricional , Triptofano/química
13.
Biochemistry ; 55(45): 6344-6354, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27779391

RESUMO

Release factors 1 and 2 (RF1 and RF2, respectively) bind to ribosomes that have a stop codon in the A site and catalyze the release of the newly synthesized protein. Following peptide release, the dissociation of RF1 and RF2 from the ribosome is accelerated by release factor 3 (RF3). The mechanism for RF3-promoted dissociation of RF1 and RF2 is unclear. It was previously proposed that RF3 hydrolyzes GTP and dissociates from the ribosome after RF1 dissociation. Here we monitored directly the dissociation kinetics of RF1 and RF3 using Förster resonance energy transfer-based assays. In contrast to the previous model, our data show that RF3 hydrolyzes GTP and dissociates from the ribosome before RF1 dissociation. We propose that RF3 stabilizes the ratcheted state of the ribosome, which consequently accelerates the dissociation of RF1 and RF2.


Assuntos
Proteínas de Escherichia coli/metabolismo , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/metabolismo , Ribossomos/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Guanosina Trifosfato/metabolismo , Hidrólise , Cinética , Modelos Genéticos , Modelos Moleculares , Conformação Molecular , Mutação , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Ligação Proteica , Conformação Proteica , Ribossomos/química , Ribossomos/genética
14.
Mol Cell ; 32(2): 292-9, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18951096

RESUMO

Translocation is an essential step in the elongation cycle of the protein synthesis that allows for the continual incorporation of new amino acids to the growing polypeptide. Movement of mRNA and tRNAs within the ribosome is catalyzed by EF-G binding and GTP hydrolysis. The 30S subunit decoding center is crucial for the selection of the cognate tRNA. However, it is not clear whether the decoding center participates in translocation. We disrupted the interactions in the decoding center by mutating the universally conserved 16S rRNA bases G530, A1492, and A1493, and the effects of these mutations on translocation were studied. Our results show that point mutation of any of these 16S rRNA bases inhibits EF-G-dependent translocation. Furthermore, the mutant ribosomes showed increased puromycin reactivity in the pretranslocation complexes, indicating that the dynamic equilibrium of the peptidyl tRNA between the classical and hybrid-state configurations is influenced by contacts in the decoding center.


Assuntos
Elongação Traducional da Cadeia Peptídica/fisiologia , Fator G para Elongação de Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Mutagênese Sítio-Dirigida , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Mutação Puntual , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA de Transferência/metabolismo , Subunidades Ribossômicas Menores de Bactérias/fisiologia , Ribossomos/efeitos dos fármacos , Ribossomos/fisiologia , Esparsomicina/farmacologia , Espectrometria de Fluorescência
15.
Biochemistry ; 52(38): 6695-701, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24025161

RESUMO

Accurate decoding of mRNA requires the precise interaction of protein factors and tRNAs with the ribosome. X-ray crystallography and cryo-electron microscopy have provided detailed structural information about the 70S ribosome with protein factors and tRNAs trapped during translation. Crystal structures showed that one of the universally conserved 16S rRNA bases, A55, in the shoulder domain of the 30S subunit interacts with elongation factors Tu and G (EF-Tu and EF-G, respectively). The exact functional role of A55 in protein synthesis is not clear. We changed A55 to U and analyzed the effect of the mutation on the elongation cycle of protein synthesis using functional assays. Expression of 16S rRNA with the A55U mutation in cells confers a dominant lethal phenotype. Additionally, ribosomes with the A55U mutation in 16S rRNA show substantially reduced in vitro protein synthesis activity. Equilibrium binding studies showed that the A55U mutation considerably inhibited the binding of the EF-Tu·GTP·tRNA ternary complex to the ribosome. Furthermore, the A55U mutation slightly inhibited the peptidyl transferase reaction, the binding of EF-G·GTP to the ribosome, and mRNA-tRNA translocation. These results indicate that A55 is important for fine-tuning the activity of the ribosome during the elongation cycle of protein synthesis.


Assuntos
Biossíntese de Proteínas/fisiologia , RNA Ribossômico 16S/genética , Ribossomos/metabolismo , Monofosfato de Adenosina/genética , Fator G para Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico 16S/química , RNA de Transferência/metabolismo , Uridina Monofosfato/genética
16.
Biochemistry ; 51(38): 7618-26, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22938718

RESUMO

Ribosomes are RNA-protein complexes responsible for protein synthesis. A dominant structural motif in the rRNAs is an RNA helix capped with a four-nucleotide loop, called a tetraloop. The sequence of the tetraloop is invariant at some positions in the rRNAs but is highly variable at other positions. The biological reason for the conservation of the tetraloop sequence at specific positions in the rRNAs is not clear. In the 16S rRNA, the GAAA tetraloop in helix 8 and the UACG tetraloop in helix 14 are highly conserved and located near the binding site for EF-Tu and EF-G. To investigate whether the structural stability of the tetraloop or the precise sequence of the tetraloop is important for function, we separately changed the GAAA tetraloop in helix 8 to a UACG tetraloop and the UACG tetraloop in helix 14 to a GAAA tetraloop. The effects of the tetraloop replacements on protein synthesis were analyzed in vivo and in vitro. Replacement of the tetraloops in helices 8 and 14 did not significantly affect the growth rate of the Escherichia coli (Δ7rrn) strain. However, the mutant ribosomes showed a slightly reduced rate of protein synthesis in vitro. In addition, we observed a 2-fold increase in the error rate of translation with the mutant ribosomes, which is consistent with an earlier report. Our results suggest that the tetraloops in helices 8 and 14 are highly conserved mainly for their structural stability and the precise sequences of these tetraloops are not critical for protein synthesis.


Assuntos
Bactérias/genética , Ribossomos , Mutagênese Sítio-Dirigida , RNA Ribossômico 16S/genética
17.
Nucleic Acids Res ; 38(12): 4108-19, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20215430

RESUMO

Ribotoxins are potent inhibitors of protein biosynthesis and inactivate ribosomes from a variety of organisms. The ribotoxin alpha-sarcin cleaves the large 23S ribosomal RNA (rRNA) at the universally conserved sarcin-ricin loop (SRL) leading to complete inactivation of the ribosome and cellular death. The SRL interacts with translation factors that hydrolyze GTP, and it is important for their binding to the ribosome, but its precise role is not yet understood. We studied the effect of alpha-sarcin on defined steps of translation by the bacterial ribosome. alpha-Sarcin-treated ribosomes showed no defects in mRNA and tRNA binding, peptide-bond formation and sparsomycin-dependent translocation. Cleavage of SRL slightly affected binding of elongation factor Tu ternary complex (EF-Tu*GTP*tRNA) to the ribosome. In contrast, the activity of elongation factor G (EF-G) was strongly impaired in alpha-sarcin-treated ribosomes. Importantly, cleavage of SRL inhibited EF-G binding, and consequently GTP hydrolysis and mRNA-tRNA translocation. These results suggest that the SRL is more critical in EF-G than ternary complex binding to the ribosome implicating different requirements in this region of the ribosome during protein elongation.


Assuntos
Endorribonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/metabolismo , Inibidores da Síntese de Proteínas/metabolismo , RNA Ribossômico 23S/metabolismo , Escherichia coli/genética , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/química , Biossíntese de Proteínas , RNA Ribossômico 23S/química , Ribossomos/química , Ribossomos/metabolismo , Ricina/metabolismo
18.
J Mol Biol ; 434(2): 167396, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34896112

RESUMO

Fragile X Syndrome, as well as some manifestations of autism spectrum disorder, results from improper RNA regulation due to a deficiency of fragile X mental retardation protein (FMRP). FMRP and its autosomal paralogs, fragile X related proteins 1 & 2 (FXR1P/2P), have been implicated in many aspects of RNA regulation, from protein synthesis to mRNA stability and decay. The literature on the fragile X related proteins' (FXPs) role in mRNA regulation and their potential mRNA targets is vast. Therefore, we developed an approach to investigate the function of FXPs in translational control using three potential mRNA targets. Briefly, we first selected top mRNA candidates found to be associated with the FXPs and whose translation are influenced by one or more of the FXPs. We then narrowed down the FXPs' binding site(s) within the mRNA, analyzed the strength of this binding in vitro, and determined how each FXP affects the translation of a minimal reporter mRNA with the binding site. Overall, all FXPs bound with high affinity to RNAs containing G-quadruplexes, such as Cyclin Dependent Kinase Inhibitor p21 and FMRP's own coding region. Interestingly, FMRP inhibited the translation of each mRNA distinctly and in a manner that appears to correlate with its binding to each mRNA. In contrast, FXR1P/2P inhibited all mRNAs tested. Finally, although binding of our RNAs was due to the RGG (arginine-glycine-glycine) motif-containing C-terminal region of the FXPs, this region was not sufficient to cause inhibition of translation.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Quadruplex G , RNA Mensageiro/genética , Transtorno do Espectro Autista , Sítios de Ligação , Humanos , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
19.
J Mol Biol ; 434(5): 167460, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35074482

RESUMO

Influenza A virus (IAV) is a human-infecting pathogen with a history of causing seasonal epidemics and on several occasions worldwide pandemics. Infection by IAV causes a dramatic decrease in host mRNA translation, whereas viral mRNAs are efficiently translated. The IAV mRNAs have a highly conserved 5'-untranslated region (5'UTR) that is rich in adenosine residues. We show that the human polyadenylate binding protein 1 (PABP1) binds to the 5'UTR of the viral mRNAs. The interaction of PABP1 with the viral 5'UTR makes the translation of viral mRNAs more resistant to canonical cap-dependent translation inhibition than model mRNAs. Additionally, PABP1 bound to the viral 5'UTR can recruit eIF4G in an eIF4E-independent manner. These results indicate that PABP1 bound to the viral 5'UTR may promote eIF4E-independent translation initiation.


Assuntos
Vírus da Influenza A , Proteína I de Ligação a Poli(A) , RNA Mensageiro , RNA Viral , Regiões 5' não Traduzidas/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
20.
Biochemistry ; 49(43): 9385-90, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20873815

RESUMO

Class I peptide release factors 1 and 2 (RF1 and RF2, respectively) recognize the stop codons in the ribosomal decoding center and catalyze peptidyl-tRNA hydrolysis. High-fidelity stop codon recognition by these release factors is essential for accurate peptide synthesis and ribosome recycling. X-ray crystal structures of RF1 and RF2 bound to the ribosome have identified residues in the mRNA-protein interface that appear to be critical for stop codon recognition. Especially interesting is a conserved histidine in all bacterial class I release factors that forms a stacking interaction with the second base of the stop codon. Here we analyzed the functional significance of this conserved histidine (position 197 in Escherichia coli) of RF1 by point mutagenesis to alanine. Equilibrium binding studies and transient-state kinetic analysis have shown that the histidine is essential for binding with high affinity to the ribosome. Furthermore, analysis of the binding data indicates a conformational change within the RF1·ribosome complex that results in a more tightly bound state. The rate of peptidyl-tRNA hydrolysis was also reduced significantly, more than the binding data would suggest, implying a defect in the orientation of the GGQ domain without the histidine residue.


Assuntos
Histidina , Fatores de Terminação de Peptídeos/química , Peptídeos/metabolismo , Sítios de Ligação , Proteínas de Escherichia coli , Hidrólise , Cinética , Mutagênese Sítio-Dirigida , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA