Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35246678

RESUMO

With an in-depth understanding of noncoding ribonucleic acid (RNA), many studies have shown that microRNA (miRNA) plays an important role in human diseases. Because traditional biological experiments are time-consuming and laborious, new calculation methods have recently been developed to predict associations between miRNA and diseases. In this review, we collected various miRNA-disease association prediction models proposed in recent years and used two common data sets to evaluate the performance of the prediction models. First, we systematically summarized the commonly used databases and similarity data for predicting miRNA-disease associations, and then divided the various calculation models into four categories for summary and detailed introduction. In this study, two independent datasets (D5430 and D6088) were compiled to systematically evaluate 11 publicly available prediction tools for miRNA-disease associations. The experimental results indicate that the methods based on information dissemination and the method based on scoring function require shorter running time. The method based on matrix transformation often requires a longer running time, but the overall prediction result is better than the previous two methods. We hope that the summary of work related to miRNA and disease will provide comprehensive knowledge for predicting the relationship between miRNA and disease and contribute to advanced computation tools in the future.


Assuntos
MicroRNAs , Algoritmos , Biologia Computacional/métodos , Predisposição Genética para Doença , Humanos , MicroRNAs/genética
2.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361945

RESUMO

Identifying disease-related miRNAs can improve the understanding of complex diseases. However, experimentally finding the association between miRNAs and diseases is expensive in terms of time and resources. The computational screening of reliable miRNA-disease associations has thus become a necessary tool to guide biological experiments. "Similar miRNAs will be associated with the same disease" is the assumption on which most current miRNA-disease association prediction methods rely; however, biased prior knowledge, and incomplete and inaccurate miRNA similarity data and disease similarity data limit the performance of the model. Here, we propose heuristic learning based on graph neural networks to predict microRNA-disease associations (HLGNN-MDA). We learn the local graph topology features of the predicted miRNA-disease node pairs using graph neural networks. In particular, our improvements to the graph convolution layer of the graph neural network enable it to learn information among homogeneous nodes and among heterogeneous nodes. We illustrate the performance of HLGNN-MDA by performing tenfold cross-validation against excellent baseline models. The results show that we have promising performance in multiple metrics. We also focus on the role of the improvements to the graph convolution layer in the model. The case studies are supported by evidence on breast cancer, hepatocellular carcinoma and renal cell carcinoma. Given the above, the experiments demonstrate that HLGNN-MDA can serve as a reliable method to identify novel miRNA-disease associations.


Assuntos
Biologia Computacional , MicroRNAs , Humanos , Algoritmos , Biologia Computacional/métodos , Heurística , MicroRNAs/genética , Redes Neurais de Computação , Testes Genéticos/métodos , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA