Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724220

RESUMO

OBJECTIVE: Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN: Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT: We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION: Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.

2.
Hepatology ; 77(2): 456-465, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714036

RESUMO

BACKGROUND AND AIMS: A better understanding of the underlying mechanism of acetaminophen (APAP)-induced liver injury (AILI) remains an important endeavor to develop therapeutic approaches. Eosinophils have been detected in liver biopsies of patients with APAP overdose. We recently demonstrated a profound protective role of eosinophils against AILI; however, the molecular mechanism had not been elucidated. APPROACH AND RESULTS: In agreement with our previous data from experiments using genetic deletion of eosinophils, we found that depletion of eosinophils in wild-type (WT) mice by an anti-IL-15 antibody resulted in exacerbated AILI. Moreover, adoptive transfer of eosinophils significantly reduced liver injury and mortality rate in WT mice. Mechanistic studies using eosinophil-specific IL-4/IL-13 knockout mice demonstrated that these cytokines, through inhibiting interferon-γ, mediated the hepatoprotective function of eosinophils. Reverse phase protein array analyses and in vitro experiments using various inhibitors demonstrated that IL-33 stimulation of eosinophils activated p38 mitogen-activated protein kinase (MAPK), and in turn, cyclooxygenases (COX), which triggered NF-κB-mediated IL-4/IL-13 production. In vivo adoptive transfer experiments showed that in contrast to naive eosinophils, those pretreated with COX inhibitors failed to attenuate AILI. CONCLUSIONS: The current study revealed that eosinophil-derived IL-4/IL-13 accounted for the hepatoprotective effect of eosinophils during AILI. The data demonstrated that the p38 MAPK/COX/NF-κB signaling cascade played a critical role in inducing IL-4/IL-13 production by eosinophils in response to IL-33.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/efeitos adversos , Eosinófilos , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-33/metabolismo , Interleucina-33/farmacologia , NF-kappa B/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado/patologia , Ciclo-Oxigenase 2 , Camundongos Knockout , Doença Hepática Induzida por Substâncias e Drogas/patologia , Camundongos Endogâmicos C57BL
3.
Hepatology ; 77(5): 1580-1592, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36129070

RESUMO

BACKGROUND AND AIMS: Insufficient liver regeneration causes post-hepatectomy liver failure and small-for-size syndrome. Identifying therapeutic targets to enhance hepatic regenerative capacity remains urgent. Recently, increased IL-33 was observed in patients undergoing liver resection and in mice after partial hepatectomy (PHx). The present study aims to investigate the role of IL-33 in liver regeneration after PHx and to elucidate its underlying mechanisms. APPROACH AND RESULTS: We performed PHx in IL-33 -/- , suppression of tumorigenicity 2 (ST2) -/- , and wild-type control mice, and found deficiency of IL-33 or its receptor ST2 delayed liver regeneration. The insufficient liver regeneration could be normalized in IL-33 -/- but not ST2 -/- mice by recombinant murine IL-33 administration. Furthermore, we observed an increased level of serotonin in portal blood from wild-type mice, but not IL-33 -/- or ST2 -/- mice, after PHx. ST2 deficiency specifically in enterochromaffin cells recapitulated the phenotype of delayed liver regeneration observed in ST2 -/- mice. Moreover, the impeded liver regeneration in IL-33 -/- and ST2 -/- mice was restored to normal levels by the treatment with (±)-2,5-dimethoxy-4-iodoamphetamine, which is an agonist of the 5-hydroxytrytamine receptor (HTR)2A. Notably, in vitro experiments demonstrated that serotonin/HTR2A-induced hepatocyte proliferation is dependent on p70S6K activation. CONCLUSIONS: Our study identified that IL-33 is pro-regenerative in a noninjurious model of liver resection. The underlying mechanism involved IL-33/ST2-induced increase of serotonin release from enterochromaffin cells to portal blood and subsequent HTR2A/p70S6K activation in hepatocytes by serotonin. The findings implicate the potential of targeting the IL-33/ST2/serotonin pathway to reduce the risk of post-hepatectomy liver failure and small-for-size syndrome.


Assuntos
Falência Hepática , Regeneração Hepática , Animais , Camundongos , Proliferação de Células , Hepatectomia , Hepatócitos/metabolismo , Interleucina-33/metabolismo , Fígado/metabolismo , Falência Hepática/metabolismo , Regeneração Hepática/fisiologia , Camundongos Endogâmicos C57BL , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serotonina , Trato Gastrointestinal/metabolismo
4.
J Hepatol ; 77(2): 344-352, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35259470

RESUMO

BACKGROUND & AIMS: Beyond the classical description of eosinophil functions in parasite infections and allergic diseases, emerging evidence supports a critical role of eosinophils in resolving inflammation and promoting tissue remodeling. However, the role of eosinophils in liver injury and the underlying mechanism of their recruitment into the liver remain unclear. METHODS: Hepatic eosinophils were detected and quantified using flow cytometry and immunohistochemical staining. Eosinophil-deficient (ΔdblGata1) mice were used to investigate the role of eosinophils in 3 models of acute liver injury. In vivo experiments using Il33-/- mice and macrophage-depleted mice, as well as in vitro cultures of eosinophils and macrophages, were performed to interrogate the mechanism of eotaxin-2 (CCL24) production. RESULTS: Hepatic accumulation of eosinophils was observed in patients with acetaminophen (APAP)-induced liver failure, whereas few eosinophils were detectable in healthy liver tissues. In mice treated with APAP, carbon tetrachloride or concanavalin A, eosinophils were recruited into the liver and played a profound protective role. Mice deficient of macrophages or IL-33 exhibited impaired hepatic eosinophil recruitment during acute liver injury. CCL24, but not CCL11, was increased after treatment of each hepatotoxin in an IL-33 and macrophage-dependent manner. In vitro experiments demonstrated that IL-33, by stimulating IL-4 release from eosinophils, promoted the production of CCL24 by macrophages. CONCLUSIONS: This is the first study to demonstrate that hepatic recruitment of and protection by eosinophils occur commonly in various models of acute liver injury. Our findings support further exploration of eosinophils as a therapeutic target to treat APAP-induced acute liver injury. LAY SUMMARY: The current study unveils that eosinophils are recruited into the liver and play a protective function during acute liver injury caused by acetaminophen overdose. The data demonstrate that IL-33-activated eosinophils trigger macrophages to release high amounts of CCL24, which promotes hepatic eosinophil recruitment. Our findings suggest that eosinophils could be an effective cell-based therapy for the treatment of acetaminophen-induced acute liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Eosinófilos , Acetaminofen/toxicidade , Animais , Interleucina-33/farmacologia , Fígado , Macrófagos , Camundongos
5.
Ann Surg ; 274(5): 705-712, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34334635

RESUMO

OBJECTIVE: The aim of this study was to evaluate peak serum alanine aminotransferase (ALT) and postoperative clinical outcomes after hypothermic oxygenated machine perfusion (HOPE) versus static cold storage (SCS) in extended criteria donation (ECD) liver transplantation (LT) from donation after brain death (DBD). BACKGROUND: HOPE might improve outcomes in LT, particularly in high-risk settings such as ECD organs after DBD, but this hypothesis has not yet been tested in a randomized controlled clinical trial (RCT). METHODS: Between September 2017 and September 2020, 46 patients undergoing ECD-DBD LT from four centers were randomly assigned to HOPE (n = 23) or SCS (n = 23). Peak-ALT levels within 7 days following LT constituted the primary endpoint. Secondary endpoints included incidence of postoperative complications [Clavien-Dindo classification (CD), Comprehensive Complication Index (CCI)], length of intensive care- (ICU) and hospital-stay, and incidence of early allograft dysfunction (EAD). RESULTS: Demographics were equally distributed between both groups [donor age: 72 (IQR: 59-78) years, recipient age: 62 (IQR: 55-65) years, labMELD: 15 (IQR: 9-25), 38 male and 8 female recipients]. HOPE resulted in a 47% decrease in serum peak ALT [418 (IQR: 221-828) vs 796 (IQR: 477-1195) IU/L, P = 0.030], a significant reduction in 90-day complications [44% vs 74% CD grade ≥3, P = 0.036; 32 (IQR: 12-56) vs 52 (IQR: 35-98) CCI, P = 0.021], and shorter ICU- and hospital-stays [5 (IQR: 4-8) vs 8 (IQR: 5-18) days, P = 0.045; 20 (IQR: 16-27) vs 36 (IQR: 23-62) days, P = 0.002] compared to SCS. A trend toward reduced EAD was observed for HOPE (17% vs 35%; P = 0.314). CONCLUSION: This multicenter RCT demonstrates that HOPE, in comparison to SCS, significantly reduces early allograft injury and improves post-transplant outcomes in ECD-DBD liver transplantation.


Assuntos
Hipotermia Induzida/instrumentação , Preservação de Órgãos/instrumentação , Perfusão/instrumentação , Complicações Pós-Operatórias/prevenção & controle , Doadores de Tecidos/provisão & distribuição , Idoso , Aloenxertos , Desenho de Equipamento , Europa (Continente)/epidemiologia , Feminino , Sobrevivência de Enxerto , Humanos , Incidência , Transplante de Fígado/métodos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia
6.
Hepatology ; 71(6): 2105-2117, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31529728

RESUMO

BACKGROUND AND AIMS: Acetaminophen (APAP) overdose represents the most frequent cause of acute liver failure, resulting in death or liver transplantation in more than one third of patients in the United States. The effectiveness of the only antidote, N-acetylcysteine, declines rapidly after APAP ingestion, long before patients are admitted to the clinic with symptoms of severe liver injury. The direct hepatotoxicity of APAP triggers a cascade of innate immune responses that may exacerbate or limit the progression of tissue damage. A better understanding of this complex mechanism will help uncover targets for therapeutic interventions. APPROACH AND RESULTS: We observed that APAP challenge caused stabilization of hypoxia-inducible factors (HIFs) in the liver and hepatic macrophages (MΦs), particularly HIF-2α. Genetic deletion of the HIF-2α gene in myeloid cells (HIF-2αmye/- ) markedly exacerbated APAP-induced liver injury (AILI) without affecting APAP bioactivation and detoxification. In contrast, hepatic and serum levels of the hepatoprotective cytokine interleukin 6 (IL-6), its downstream signal transducer and transcription factor 3 activation in hepatocytes, as well as hepatic MΦ IL-6 expression were markedly reduced in HIF-2αmye/- mice compared to wild-type mice post-APAP challenge. In vitro experiments revealed that hypoxia induced IL-6 production in hepatic MΦs and that such induction was abolished in HIF-2α-deleted hepatic MΦs. Restoration of IL-6 by administration of exogenous IL-6 ameliorated AILI in HIF-2αmye/- mice. Finally, IL-6-mediated hepatoprotection against AILI was abolished in hepatocyte-specific IL-6 receptor knockout mice. CONCLUSIONS: The data demonstrate that APAP treatment leads to HIF-2α stabilization in hepatic MΦs and that HIF-2α subsequently reprograms hepatic MΦs to produce the hepatoprotective cytokine IL-6, thereby ameliorating AILI.


Assuntos
Acetaminofen/toxicidade , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Doença Hepática Induzida por Substâncias e Drogas , Hipóxia , Interleucina-6/metabolismo , Células de Kupffer/metabolismo , Analgésicos não Narcóticos/toxicidade , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reprogramação Celular , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Expressão Gênica , Hipóxia/imunologia , Hipóxia/metabolismo , Imunidade Inata , Inativação Metabólica , Camundongos , Camundongos Knockout , Transdução de Sinais
7.
Hepatology ; 67(6): 2384-2396, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29251791

RESUMO

Coagulation is a critical component in the progression of liver disease. Identification of key molecules involved in the intrahepatic activation of coagulation (IAOC) will be instrumental in the development of effective therapies against liver disease. Using a mouse model of concanavalin A (ConA)-induced hepatitis, in which IAOC plays an essential role in causing liver injury, we uncovered a procoagulant function of chitinase 3-like 1 (Chi3l1). Chi3l1 expression is dramatically elevated after ConA challenge, which is dependent on ConA-induced T cell activation and the resulting interferon γ and tumor necrosis factor α productions. Compared with wild-type mice, Chi3l1-/- mice show less IAOC, reduced tissue factor (TF) expression, and attenuated liver injury. Reconstituting Chi3l1-/- mice with recombinant TF triggers IAOC and augments liver injury. CONCLUSION: Our data demonstrate that Chi3l1, through induction of TF via mitogen-activated protein kinase activation, promotes IAOC and tissue injury. (Hepatology 2018;67:2384-2396).


Assuntos
Coagulação Sanguínea/fisiologia , Proteína 1 Semelhante à Quitinase-3/fisiologia , Hepatopatias/etiologia , Fígado/irrigação sanguínea , Tromboplastina/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos
8.
Liver Int ; 39(5): 788-801, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843314

RESUMO

Liver disease causing end organ failure is a growing cause of mortality. In most cases, the only therapy is liver transplantation. However, liver transplantation is a complex undertaking and its success is dependent on a number of factors. In particular, liver transplantation is subject to the risks of ischaemia-reperfusion injury (IRI). Liver IRI has significant effects on the function of a liver after transplantation. The cellular and molecular mechanisms governing IRI in liver transplantation are numerous. They involve multiple cells types such as liver sinusoidal endothelial cells, hepatocytes, Kupffer cells, neutrophils and platelets acting via an interconnected network of molecular pathways such as activation of toll-like receptor signalling, alterations in micro-RNA expression, production of ROS, regulation of autophagy and activation of hypoxia-inducible factors. Interestingly, the cellular and molecular events in liver IRI can be correlated with clinical risk factors for IRI in liver transplantation such as donor organ steatosis, ischaemic times, donor age, and donor and recipient coagulopathy. Thus, understanding the relationship of the clinical risk factors for liver IRI to the cellular and molecular mechanisms that govern it is critical to higher levels of success after liver transplantation. This in turn will help in the discovery of therapeutics for IRI in liver transplantation - a process that will lead to improved outcomes for patients suffering from end-stage liver disease.


Assuntos
Transplante de Fígado/efeitos adversos , Fígado/irrigação sanguínea , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Animais , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Humanos , Células de Kupffer/metabolismo , Fígado/patologia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/terapia , Transdução de Sinais , Doadores de Tecidos , Receptores Toll-Like/metabolismo
10.
Hepatology ; 66(1): 220-234, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28295449

RESUMO

Acetaminophen (APAP) overdose is a leading cause of acute liver failure worldwide, in which mitochondrial DNA (mtDNA) released by damaged hepatocytes activates neutrophils through binding of Toll-like receptor 9 (TLR9), further aggravating liver injury. Here, we demonstrated that mtDNA/TLR9 also activates a negative feedback pathway through induction of microRNA-223 (miR-223) to limit neutrophil overactivation and liver injury. After injection of APAP in mice, levels of miR-223, the most abundant miRNAs in neutrophils, were highly elevated in neutrophils. Disruption of the miR-223 gene exacerbated APAP-induced hepatic neutrophil infiltration, oxidative stress, and injury and enhanced TLR9 ligand-mediated activation of proinflammatory mediators in neutrophils. An additional deletion of the intercellular adhesion molecule 1 (ICAM-1) gene ameliorated APAP-induced neutrophil infiltration and liver injury in miR-223 knockout mice. In vitro experiments revealed that miR-223-deficient neutrophils were more susceptible to TLR9 agonist-mediated induction of proinflammatory mediators and nuclear factor kappa B (NF-κB) signaling, whereas overexpression of miR-223 attenuated these effects in neutrophils. Moreover, inhibition of TLR9 signaling by either treatment with a TLR9 inhibitor or by disruption of TLR9 gene partially, but significantly, suppressed miR-223 expression in neutrophils post-APAP injection. In contrast, activation of TLR9 up-regulated miR-223 expression in neutrophils in vivo and in vitro. Mechanistically, activation of TLR9 up-regulated miR-223 by enhancing NF-κB binding on miR-223 promoter, whereas miR-223 attenuated TLR9/NF-κB-mediated inflammation by targeting IκB kinase α expression. Collectively, up-regulation of miR-223 plays a key role in terminating the acute neutrophilic response and is a therapeutic target for treatment of APAP-induced liver failure. (Hepatology 2017;66:220-234).


Assuntos
Acetaminofen/toxicidade , DNA Mitocondrial/metabolismo , Hepatócitos/efeitos dos fármacos , Falência Hepática Aguda/metabolismo , MicroRNAs/genética , Receptor Toll-Like 9/metabolismo , Acetaminofen/farmacologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hepatócitos/citologia , Falência Hepática Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/citologia , Distribuição Aleatória , Valores de Referência , Transdução de Sinais , Regulação para Cima
11.
J Hepatol ; 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28870670

RESUMO

BACKGROUND & AIM: Alcohol consumption increases intestinal permeability and causes damage to hepatocytes, leading to the release of pathogen- and damage-associated molecular pattern molecules (PAMPs and DAMPs), stimulating hepatic macrophages and activating NF-κB. The resultant inflammation exacerbates alcoholic liver disease (ALD). However, much less is known about the mechanisms attenuating inflammation and preventing disease progression in most heavy drinkers. Interleukin (IL)-33 is a DAMP (alarmin) released from dead cells that acts through its receptor, IL-1 receptor like 1 (ST2). ST2 signaling has been reported to either stimulate or inhibit NF-κB activation. The role of IL-33/ST2 in ALD has not been studied. METHODS: Serum levels of IL-33 and its decoy receptor, soluble ST2 (sST2) were measured in ALD patients. Alcohol-induced liver injury, inflammation and hepatic macrophage activation were compared between wild-type, IL-33-/- and ST2-/- mice in several models. RESULTS: Elevation of serum IL-33 and sST2 were only observed in patients with severe decompensated ALD. Consistently, in mice with mild ALD without significant cell death and IL-33 release, IL-33 deletion did not affect alcohol-induced liver damage. However, ST2-deletion exacerbated ALD, through enhancing NF-κB activation in liver macrophages. In contrast, when extracellular IL-33 was markedly elevated, liver injury and inflammation were attenuated in both IL-33-/- and ST2-/- mice compared to wild-type mice. CONCLUSION: Our data revealed a dichotomous role of IL-33/ST2 signaling during ALD development. At early and mild stages, ST2 restrains the inflammatory activation of hepatic macrophages, through inhibiting NF-κB, and plays a protective function in an IL-33-independent fashion. During severe liver injury, significant cell death and marked IL-33 release occur, which triggers IL-33/ST2 signaling and exacerbates tissue damage. LAY SUMMARY: In mild ALD, ST2 negatively regulates the inflammatory activation of hepatic macrophages, thereby protecting against alcohol-induced liver damage, whereas in the case of severe liver injury, the release of extracellular IL-33 may exacerbate tissue inflammation by triggering the canonical IL-33/ST2L signaling in hepatic macrophages.

12.
Proc Natl Acad Sci U S A ; 111(50): E5420-8, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25422468

RESUMO

Diabetic nephropathy is a major cause of end-stage kidney disease, and overactivity of the endocannabinoid/cannabinoid 1 receptor (CB1R) system contributes to diabetes and its complications. Zucker diabetic fatty (ZDF) rats develop type 2 diabetic nephropathy with albuminuria, reduced glomerular filtration, activation of the renin-angiotensin system (RAS), oxidative/nitrative stress, podocyte loss, and increased CB1R expression in glomeruli. Peripheral CB1R blockade initiated in the prediabetic stage prevented these changes or reversed them when animals with fully developed diabetic nephropathy were treated. Treatment of diabetic ZDF rats with losartan, an angiotensin II receptor-1 (Agtr1) antagonist, attenuated the development of nephropathy and down-regulated renal cortical CB1R expression, without affecting the marked hyperglycemia. In cultured human podocytes, CB1R and desmin gene expression were increased and podocin and nephrin content were decreased by either the CB1R agonist arachydonoyl-2'-chloroethylamide, angiotensin II, or high glucose, and the effects of all three were antagonized by CB1R blockade or siRNA-mediated knockdown of CNR1 (the cannabinoid type 1 receptor gene). We conclude that increased CB1R signaling in podocytes contributes to the development of diabetic nephropathy and represents a common pathway through which both hyperglycemia and increased RAS activity exert their deleterious effects, highlighting the therapeutic potential of peripheral CB1R blockade.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/metabolismo , Modelos Biológicos , Podócitos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Análise de Variância , Angiotensina II/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Desmina/metabolismo , Nefropatias Diabéticas/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Losartan/farmacologia , Pirazóis/síntese química , Pirazóis/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Zucker , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Sulfonamidas/síntese química , Sulfonamidas/farmacologia
14.
J Immunol ; 193(5): 2512-8, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25063867

RESUMO

Acetaminophen (APAP)-induced liver injury (AILI) accounts for half of the acute liver failure cases in the United States. A better understanding of the underlying mechanisms of AILI is necessary for the development of novel antidotes. We found that pretreatment with IL-22 protected mice from APAP-mediated hepatotoxicity. The protection was dependent on STAT3, as IL-22 failed to reduce APAP hepatotoxicity in liver-specific STAT3 knockout mice. In contrast to the acute exposure to IL-22, the endogenous chronic overexpression of IL-22 in IL-22 transgenic (TG) mice or IL-22 adenovirus treatment for 6 wk resulted in a markedly increased susceptibility to AILI. Furthermore, the hepatic expression levels of cytochrome 2E1 (Cyp2E1) and Cyp1A2 were much higher in IL-22TG mice. Ablation of Cyp2E1 but not hepatic STAT3 abolished AILI and protein-adduct formation in IL-22TG mice. Finally, hepatic expression of HNF-1α, a transcriptional factor that is known to control Cyp2E1 expression, was elevated in IL-22TG mice compared with wild-type mice. Upregulation of hepatic Cyp2E1 was only observed in mice with constitutive overexpression of IL-22 but not with short-term treatment with one dose of IL-22 or multiple doses of IL-22 for 2 wk. In conclusion, short-term acute IL-22 exposure protects mice against AILI through STAT3 activation; however, chronic constitutive overexpression of IL-22 exacerbates AILI by increasing Cyp2E1 and toxic reactive APAP metabolite production. These findings may not only enhance our understanding of the effects of chronic inflammation on AILI in patients with liver disease, but are also helpful to identify novel therapeutic targets for the treatment of AILI.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Interleucinas/imunologia , Acetaminofen/farmacologia , Doença Aguda , Analgésicos não Narcóticos/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Crônica , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/imunologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/imunologia , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/imunologia , Humanos , Interleucinas/genética , Interleucinas/farmacologia , Camundongos , Camundongos Knockout , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Interleucina 22
15.
Mol Pharmacol ; 85(6): 849-57, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682466

RESUMO

The benzoquinone ansamycins (BQAs) are a valuable class of antitumor agents that serve as inhibitors of heat shock protein (Hsp)-90. However, clinical use of BQAs has resulted in off-target toxicities, including concerns of hepatotoxicity. Mechanisms underlying the toxicity of quinones include their ability to redox cycle and/or arylate cellular nucleophiles. We have therefore designed 19-substituted BQAs to prevent glutathione conjugation and nonspecific interactions with protein thiols to minimize off-target effects and reduce hepatotoxicity. 19-Phenyl- and 19-methyl-substituted versions of geldanamycin and its derivatives, 17-allylamino-17-demethoxygeldanamycin and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), did not react with glutathione, whereas marked reactivity was observed using parent BQAs. Importantly, although 17-DMAG induced cell death in primary and cultured mouse hepatocytes, 19-phenyl and 19-methyl DMAG showed reduced toxicity, validating the overall approach. Furthermore, our data suggest that arylation reactions, rather than redox cycling, are a major mechanism contributing to BQA hepatotoxicity. 19-Phenyl BQAs inhibited purified Hsp90 in a NAD(P)H: quinone oxidoreductase 1 (NQO1)-dependent manner, demonstrating increased efficacy of the hydroquinone ansamycin relative to its parent quinone. Molecular modeling supported increased stability of the hydroquinone form of 19-phenyl-DMAG in the active site of human Hsp90. In human breast cancer cells, 19-phenyl BQAs induced growth inhibition also dependent upon metabolism via NQO1 with decreased expression of client proteins and compensatory induction of Hsp70. These data demonstrate that 19-substituted BQAs are unreactive with thiols, display reduced hepatotoxicity, and retain Hsp90 and growth-inhibitory activity in human breast cancer cells, although with diminished potency relative to parent BQAs.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Rifabutina/farmacologia , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Cultivadas , Glutationa/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rifabutina/química
17.
Hepatology ; 57(4): 1575-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23150232

RESUMO

UNLABELLED: Acetaminophen (APAP) overdose causes severe, fulminant liver injury. The underlying mechanism of APAP-induced liver injury (AILI), studied by a murine model, displays similar characteristics of injury as those observed in patients. Previous studies suggest that aside from APAP-induced direct damage to hepatocytes, the hepatic innate immune system is activated and may contribute to the overall pathogenesis of AILI. The current study employed the use of two murine natural killer (NK) cells with T-cell receptor (NKT) cell knockout models (CD1d(-/-) and Jα18(-/-) ) to elucidate the specific role of NKT cells in AILI. Compared to wild-type (WT) mice, NKT cell-deficient mice were more susceptible to AILI, as indicated by higher serum alanine transaminase levels and mortality. Increased levels of cytochrome P450 2E1 (CYP2E1) protein expression and activities, which resulted in increased APAP protein adduct formation, were observed in livers of APAP-treated NKT cell-deficient mice, compared to WT mice. Compared to WT mice, starvation of NKT cell-deficient mice induced a higher increase of ketone bodies, which up-regulate CYP2E1 through protein stabilization. CONCLUSION: Our data revealed a novel role of NKT cells in regulating responses to starvation-induced metabolic stress. Elevated ketone body production in NKT cell-deficient mice resulted in increased CYP2E1-mediated APAP biotransformation and susceptibility to AILI.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Suscetibilidade a Doenças/patologia , Linfopenia/patologia , Células T Matadoras Naturais/patologia , Animais , Antígenos CD1d/genética , Antígenos CD1d/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Modelos Animais de Doenças , Feminino , Glutationa/metabolismo , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Fígado/patologia , Linfopenia/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Espécies Reativas de Oxigênio/metabolismo
18.
Diabetes ; 73(5): 701-712, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320268

RESUMO

Bile acids (BAs) are pleiotropic regulators of metabolism. Elevated levels of hepatic and circulating BAs improve energy metabolism in peripheral organs, but the precise mechanisms underlying the metabolic benefits and harm still need to be fully understood. In the current study, we identified orosomucoid 2 (ORM2) as a liver-secreted hormone (i.e., hepatokine) induced by BAs and investigated its role in BA-induced metabolic improvements in mouse models of diet-induced obesity. Contrary to our expectation, under a high-fat diet (HFD), our Orm2 knockout (Orm2-KO) exhibited a lean phenotype compared with C57BL/6J control, partly due to the increased energy expenditure. However, when challenged with a HFD supplemented with cholic acid, Orm2-KO eliminated the antiobesity effect of BAs, indicating that ORM2 governs BA-induced metabolic improvements. Moreover, hepatic ORM2 overexpression partially replicated BA effects by enhancing insulin sensitivity. Mechanistically, ORM2 suppressed interferon-γ/STAT1 activities in inguinal white adipose tissue depots, forming the basis for anti-inflammatory effects of BAs and improving glucose homeostasis. In conclusion, our study provides new insights into the molecular mechanisms of BA-induced liver-adipose cross talk through ORM2 induction.


Assuntos
Ácidos e Sais Biliares , Orosomucoide , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Orosomucoide/metabolismo , Orosomucoide/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos
19.
eGastroenterology ; 1(2)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38074919

RESUMO

Viral hepatitis, alcohol-associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the three major causes of chronic liver diseases, which account for approximately 2 million deaths per year worldwide. The current direct-acting antiviral drugs and vaccinations have effectively reduced and ameliorated viral hepatitis infection, but there are still no effective drug treatments for ALD, NAFLD and liver cancer due to the poor understanding of their pathogenesis. To better understand the pathogenesis, the fifth Chinese American Liver Society/Society of Chinese Bioscientists in America Hepatology Division Annual Symposium, which was held virtually on 21-22 October 2022, focused on the topics related to ALD, NAFLD and liver cancer. Here, we briefly highlight the presentations that focus on the current progress in basic and translational research in ALD, NAFLD and liver cancer. The roles of non-coding RNA, autophagy, extrahepatic signalling, macrophages, etc in liver diseases are deliberated, and the application of single-cell RNA sequencing in the study of liver disease is also discussed.

20.
Mol Cells ; 46(9): 527-534, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37691258

RESUMO

Liver ischemia-reperfusion injury (IRI) is the main cause of organ dysfunction and failure after liver surgeries including organ transplantation. The mechanism of liver IRI is complex and numerous signals are involved but cellular metabolic disturbances, oxidative stress, and inflammation are considered the major contributors to liver IRI. In addition, the activation of inflammatory signals exacerbates liver IRI by recruiting macrophages, dendritic cells, and neutrophils, and activating NK cells, NKT cells, and cytotoxic T cells. Technological advances enable us to understand the role of specific immune cells during liver IRI. Accordingly, therapeutic strategies to prevent or treat liver IRI have been proposed but no definitive and effective therapies exist yet. This review summarizes the current update on the immune cell functions and discusses therapeutic potentials in liver IRI. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.


Assuntos
Fígado , Traumatismo por Reperfusão , Humanos , Inflamação , Células Matadoras Naturais , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA