Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 98(19): 8099-109, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25091044

RESUMO

Microorganisms are ubiquitous on earth, often forming complex microbial communities in numerous different habitats. Most of these organisms cannot be readily cultivated in the laboratory using standard media and growth conditions. However, it is possible to gain access to the vast genetic, enzymatic, and metabolic diversity present in these microbial communities using cultivation-independent approaches such as sequence- or function-based metagenomics. Function-based analysis is dependent on heterologous expression of metagenomic libraries in a genetically amenable cloning and expression host. To date, Escherichia coli is used in most cases; however, this has the drawback that many genes from heterologous genomes and complex metagenomes are expressed in E. coli either at very low levels or not at all. This review emphasizes the importance of establishing alternative microbial expression systems consisting of different genera and species as well as customized strains and vectors optimized for heterologous expression of membrane proteins, multigene clusters encoding protein complexes or entire metabolic pathways. The use of alternative host-vector systems will complement current metagenomic screening efforts and expand the yield of novel biocatalysts, metabolic pathways, and useful metabolites to be identified from environmental samples.


Assuntos
Bactérias/genética , Genoma Bacteriano , Metagenoma , Bactérias/classificação , Bactérias/isolamento & purificação , Escherichia coli/genética , Metagenômica
2.
Appl Microbiol Biotechnol ; 95(1): 135-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22143172

RESUMO

Cellulose is an important renewable resource for the production of bioethanol and other valuable compounds. Several ionic liquids (ILs) have been described to dissolve water-insoluble cellulose and/or wood. Therefore, ILs would provide a suitable reaction medium for the enzymatic hydrolysis of cellulose if cellulases were active and stable in the presence of high IL concentrations. For the discovery of novel bacterial enzymes with elevated stability in ILs, metagenomic libraries from three different hydrolytic communities (i.e. an enrichment culture inoculated with an extract of the shipworm Teredo navalis, a biogas plant sample and elephant faeces) were constructed and screened. Altogether, 14 cellulolytic clones were identified and subsequently assayed in the presence of six different ILs. The most promising enzymes, CelA2, CelA3 (both derived from the biogas plant) and CelA84 (derived from elephant faeces), showed high activities (up to 6.4 U/mg) in the presence of 30% (v/v) ILs. As these enzymes were moderately thermophilic and halotolerant, they retained 40% to 80% relative activity after 34 days in 4 M NaCl, and they were benchmarked with two thermostable enzymes, CelA from Thermotoga maritima and Cel5K from a metagenome library derived from Avachinsky crater in Kamchatka. These enzymes also exhibited high activity (up to 11.1 U/mg) in aqueous IL solutions (30% (v/v)). Some of the enzymes furthermore exhibited remarkable stability in 60% (v/v) IL. After 4 days, CelA3 and Cel5K retained up to 79% and 100% of their activity, respectively. Altogether, the obtained data suggest that IL tolerance appears to correlate with thermophilicity and halotolerance.


Assuntos
Celulases/efeitos dos fármacos , Estabilidade Enzimática , Temperatura Alta , Líquidos Iônicos/farmacologia , Metagenômica , Cloreto de Sódio/farmacologia , Animais , Celulases/genética , Celulases/metabolismo , Biblioteca Gênica , Hidrólise , Metagenoma
3.
Methods Mol Biol ; 834: 1-16, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22144349

RESUMO

Cellulose is an easily renewable and highly occurring resource. To take advantage of this great potential, there is a constant need of new cellulose degrading enzymes. In industrial applications enzymes have to function under extreme conditions like high temperature, very acidic or basic pH and different solvents. Cellulases have a huge area of application, for example the textile and food industry as well as the generation of bioethanol as an alternative energy source. They have the ability to yield a great energetic potential, but there is still a lack of economical technologies to conquer the stability of the cellulose structure. Via metagenomic research and well-directed screening, it is possible to detect new cellulases, which are active under tough industrial conditions.


Assuntos
Biomassa , Celulases/metabolismo , Ensaios Enzimáticos/métodos , Celulases/química , Celulases/genética , Celulose/química , Fontes Geradoras de Energia , Biblioteca Genômica , Microbiologia Industrial , Indústrias , Metagenômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA