RESUMO
Compromised protein folding capacity in the endoplasmic reticulum (ER) leads to a protein traffic jam that produces a toxic environment called ER stress. However, the ER smartly handles such a critical situation by activating a cascade of proteins responsible for sensing and responding to the noxious stimuli of accumulated proteins. The ER protein load is higher in secretory cells, such as liver hepatocytes, which are thus prone to stress-mediated toxicity and various diseases, including alcohol-induced liver injury, fatty liver disease, and viral hepatitis. Therefore, we discuss the molecular cues that connect ER stress to hepatic diseases. Moreover, we review the literature on ER stress-regulated miRNA in the pathogenesis of liver diseases to give a comprehensive overview of mechanistic insights connecting ER stress and miRNA in the context of liver diseases. We also discuss currently discovered regulated IRE1 dependent decay in regulation of hepatic diseases.
Assuntos
Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Hepatopatias/etiologia , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Dobramento de Proteína , Transporte ProteicoRESUMO
Xerostomia is a state of oral dryness associated with salivary gland dysfunction and is induced by stress, radiation and chemical therapy, various systemic and autoimmune diseases, and specific medications. Fluid secretion is interrupted by the stimulation of neurotransmitter-induced increase in cytosolic calcium ([Ca2+]i) in salivary gland acinar cells, prompting the mobilization of ion channels and their transporters. Salivary fluid and protein secretion are principally dependent on parasympathetic and sympathetic nerves. Various inflammatory cytokines allied with lymphocytic infiltration cause glandular damage and Sjogren's syndrome, an autoimmune exocrinopathy associated with hyposalivation. A defect in IP3Rs, a major calcium release channel, prompts inadequate agonist-induced [Ca2+]i in acinar cells and deters salivary flow. The store-operated calcium entry-mediated Ca2+ movement into the acini activates K+ and Cl- channels, which further opens a water channel protein, aquaporin-5, and triggers the release of fluid secretion from the salivary glands. The cellular mechanism of salivary gland dysfunction and hyposalivation has not yet been elucidated. In this review, we focused mainly on the proteins responsible for deficient saliva, the correlation between inflammation and salivation, autoimmune disorders and other ailments or complications associated with hyposalivation.