Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Chem ; 66(17): 11701-11717, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37596939

RESUMO

Remdesivir 1 is an phosphoramidate prodrug that releases the monophosphate of nucleoside GS-441524 (2) into lung cells, thereby forming the bioactive triphosphate 2-NTP. 2-NTP, an analog of ATP, inhibits the SARS-CoV-2 RNA-dependent RNA polymerase replication and transcription of viral RNA. Strong clinical results for 1 have prompted interest in oral approaches to generate 2-NTP. Here, we describe the discovery of a 5'-isobutyryl ester prodrug of 2 (GS-5245, Obeldesivir, 3) that has low cellular cytotoxicity and 3-7-fold improved oral delivery of 2 in monkeys. Prodrug 3 is cleaved presystemically to provide high systemic exposures of 2 that overcome its less efficient metabolism to 2-NTP, leading to strong SARS-CoV-2 antiviral efficacy in an African green monkey infection model. Exposure-based SARS-CoV-2 efficacy relationships resulted in an estimated clinical dose of 350-400 mg twice daily. Importantly, all SARS-CoV-2 variants remain susceptible to 2, which supports development of 3 as a promising COVID-19 treatment.


Assuntos
COVID-19 , Pró-Fármacos , Chlorocebus aethiops , Humanos , Animais , SARS-CoV-2 , Tratamento Farmacológico da COVID-19 , Nucleosídeos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , RNA Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Furanos
2.
Handb Exp Pharmacol ; (193): 99-122, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19639280

RESUMO

A selective, high-affinity A(2B) adenosine receptor (AR) antagonist will be useful as a pharmacological tool to help determine the role of the A(2B)AR in inflammatory diseases and angiogenic diseases. Based on early A(2B)AR-selective ligands with nonoptimal pharmaceutical properties, such as 15 (MRS 1754: K(i)(hA(2B)) = 2 nM; K(i)(hA(1)) = 403 nM; K(i)(hA(2A)) = 503 NM, and K(i)(hA(3)) = 570 nM), several groups have discovered second-generation A(2B)AR ligands that are suitable for development. Scientists at CV Therapeutics have discovered the selective, high-affinity A(2B)AR antagonist 22, a 8-(4-pyrazolyl)-xanthine derivative, (CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM). Compound 22 has demonstrated favorable pharmacokinetic (PK) properties (T(1/2) = 4 h and F > 35% rat), and it is a functional antagonist at the A(2B)AR(K (B) = 6 nM). In a mouse model of asthma, compound 22 demonstrated a dose-dependent efficacy supporting the role of the A(2B)AR in asthma. In two Phase I clinical trails, 22 (CVT-6883) was found to be safe, well tolerated, and suitable for once-daily dosing. Baraldi et al. have independently discovered a selective, high-affinity A(2B)AR antagonist, 30 (MRE2029F20), 8-(5-pyrazolyl)-xanthine (K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) = 200 nM; K(i)(hA(2A), A(3)) > 1,000, that has been selected for development in conjunction with King Pharmaceuticals. Compound 30 has been demonstrated to be a functional antagonist of the A(2B)AR, and it has been radiolabeled for use in pharmacological studies. A third compound, 58 (LAS-38096), is a 2-aminopyrimidine derivative (discovered by the Almirall group) that has high A(2B)AR affinity and selectivity (K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM), and 58 has been moved into preclinical safety testing. A fourth selective, high-affinity A(2B)AR antagonist, 54 (OSIP339391 K(i))(hA(2B)) = 0.5 nM; K(i))(hA(1)) = 37 nM; K(i))(hA(2A)) = 328; and K(i))(hA(3)) = 450 nm) was discovered by the OSI group. The three highly selective, high-affinity A(2B)AR antagonists that have been selected for development should prove useful in subsequent clinical trials that will establish the role of the A(2B)ARs in various disease states.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Adenina/farmacologia , Aminopiridinas/farmacologia , Animais , Asma/etiologia , Descoberta de Drogas , Humanos , Pirazinas/farmacologia , Pirimidinas/farmacologia , Receptor A2B de Adenosina/fisiologia , Xantinas/farmacologia
3.
J Med Chem ; 51(7): 2267-78, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18321039

RESUMO

Recently, we have reported a series of new 1,3-symmetrically (R 1 = R 3) substituted xanthines ( 3 and 4) which have high affinity and selectivity for the human adenosine A 2B receptors (hA(2B)-AdoR). Unfortunately, this class of compounds had poor pharmacokinetic properties. This prompted us to investigate the effect of differential alkyl substitution at the N-1 and N-3 positions ( N 1-R not equal to N 3-R) on A(2B)-AdoR affinity and selectivity; we had the dual objectives of enhancing affinity and selectivity for the A(2B)-AdoR, as well as improving oral bioavailability. This effort has led to the discovery of compound 62, that displayed high affinity and selectivity for the hA(2B)-AdoR (K(i) = 22 nM). In addition, compound 62 showed high functional potency in inhibiting the accumulation of cyclic adenosine monophosphate induced by 5'- N-ethylcarboxamidoadenosine in HEK-A(2B)-AdoR and NIH3T3 cells with K(B) values of 6 and 2 nM, respectively. In a single ascending-dose phase I clinical study, compound 62 had no serious adverse events and was well tolerated.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Xantinas/síntese química , Xantinas/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , AMP Cíclico/análise , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Xantinas/química
4.
Bioorg Med Chem Lett ; 18(4): 1397-401, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18226896

RESUMO

A series of N-1 monosubstituted 8-pyrazolyl xanthines have been synthesized and evaluated for their affinity for the adenosine receptors (AdoRs). We have discovered two compounds 18 (CVT-7124) and 28 (CVT-6694) that display good affinity for the A(2B) AdoR (K(i)=6 nM and 7 nM, respectively) and greater selectivity for the human A(1), A(2A), and A(3) AdoRs (>1000-, >830-, and >1500-fold; >850-, >700-, and >1280-fold, respectively). CVT-6694 has been shown to block the release of interleukin-6 and monocyte chemotactic protein-1 from bronchial smooth muscle cells (BSMC), a process believed to be promoted by activation of A(2B) AdoR.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Pirazóis/farmacologia , Xantinas/farmacologia , Animais , Ligação Competitiva , Células CHO , Cricetinae , Cricetulus , Humanos , Cinética , Pirazóis/síntese química , Pirazóis/química , Receptor A2B de Adenosina/metabolismo , Especificidade por Substrato , Uracila/análogos & derivados , Uracila/química , Xantinas/síntese química , Xantinas/química
5.
J Med Chem ; 49(12): 3682-92, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16759111

RESUMO

Adenosine has been suggested to induce bronchial hyperresponsiveness in asthmatics, which is believed to be an A(2B) adenosine receptor (AdoR) mediated pathway. We hypothesize that a selective, high-affinity A(2B) AdoR antagonist may provide therapeutic benefit in the treatment of asthma. In an attempt to identify a high-affinity, selective antagonist for the A(2B) AdoR, we synthesized 8-(C-4-pyrazolyl) xanthines. Compound 22, 8-(1H-pyrazol-4-yl)-1,3-dipropyl xanthine, is a N-1 unsubstituted pyrazole derivative that has favorable binding affinity (K(i) = 9 nM) for the A(2B) AdoR, but it is only 2-fold selective versus the A(1) AdoR. Introduction of a benzyl group at the N-1-pyrazole position of 22 resulted in 19, which had moderate selectivity. The initial focus of the SAR study was on the preparation of substituted benzyl derivatives of 19 because the corresponding phenyl, phenethyl, and phenpropyl derivatives showed a decrease in A(2B) AdoR affinity and selectivity relative to 19. The preferred substitution on the phenyl ring of 19 contains an electron-withdrawing group, specifically F or CF(3) at the m-position, as in 33 and 36 respectively, increases the selectivity while retaining the affinity for the A(2B) AdoR. Exploring disubstitutions on the phenyl ring of derivatives 33 and36 led to the 2-chloro-5-trifluoromethylphenyl derivative 50, which retained the A(2B) AdoR affinity but enhanced the selectivity relative to 36. After optimization of the substitution on the 8-pyrazole xanthine, 1,3-disubstitution of the xanthine core was explored with methyl, ethyl, butyl, and isobutyl groups. In comparison to the corresponding dipropyl analogues, the smaller 1,3-dialkyl groups (methyl and ethyl) increased the A(2B) AdoR binding selectivity of the xanthine derivatives while retaining the affinity. However, the larger 1,3-dialkyl groups (isobutyl and butyl) resulted in a decrease in both A(2B) AdoR affinity and selectivity. This final SAR optimization led to the discovery of 1,3-dimethyl derivative 60, 8-(1-(3-(trifluoromethyl) benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl xanthine, a high-affinity (K(i) = 1 nM) A(2B) AdoR antagonist with high selectivity (990-, 690-, and 1,000-) for the human A(1), A(2A,) and A(3) AdoRs.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Pirazóis/síntese química , Teofilina/análogos & derivados , Xantinas/síntese química , Animais , Linhagem Celular , Cricetinae , Cricetulus , Humanos , Pirazóis/química , Pirazóis/farmacologia , Ensaio Radioligante , Teofilina/síntese química , Teofilina/química , Teofilina/farmacologia , Xantinas/química , Xantinas/farmacologia
6.
Purinergic Signal ; 5(1): 21-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18568423

RESUMO

The selective, high affinity A(2B) adenosine receptor (AdoR) antagonists that were synthesized by several research groups should aid in determining the role of the A(2B) AdoR in inflammatory diseases like asthma or rheumatoid arthritis (RA) and angiogenic diseases like diabetic retinopathy or cancer. CV Therapeutics scientists discovered the selective, high affinity A(2B) AdoR antagonist 10, a 8-(4-pyrazolyl)-xanthine derivative [CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM] that has favorable pharmacokinetic (PK) properties (t (1/2) = 4 h and F > 35% rat). Compound 10 demonstrated functional antagonism at the A(2B) AdoR (K(B) = 6 nM) and efficacy in a mouse model of asthma. In two phase 1 clinical trials, CVT-6883 was found to be safe, well tolerated, and suitable for once daily dosing. A second compound 20, 8-(5-pyrazolyl)-xanthine, has been nominated for development from Baraldi's group in conjunction with King Pharmaceuticals that has favorable A(2B) AdoR affinity and selectivity [K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 1,000; and K(i)(hA(3)) > 1,000 nM], and it has been demonstrated to be a functional antagonist. A third compound 32, a 2-aminopyrimidine, from the Almirall group has high A(2B) AdoR affinity and selectivity [K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM], and 32 has been moved into preclinical safety testing. Since three highly selective, high affinity A(2B) AdoR antagonists have been nominated for development with 10 (CVT-6883) being the furthest along in the development process, the role of the A(2B) AdoR in various disease states will soon be established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA