Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34557909

RESUMO

Sortilin is a neuronal receptor for apolipoprotein E (apoE). Sortilin-dependent uptake of lipidated apoE promotes conversion of polyunsaturated fatty acids (PUFA) into neuromodulators that induce anti-inflammatory gene expression in the brain. This neuroprotective pathway works with the apoE3 variant but is lost with the apoE4 variant, the main risk factor for Alzheimer's disease (AD). Here, we elucidated steps in cellular handling of lipids through sortilin, and why they are disrupted by apoE4. Combining unbiased proteome screens with analyses in mouse models, we uncover interaction of sortilin with fatty acid-binding protein 7 (FABP7), the intracellular carrier for PUFA in the brain. In the presence of apoE3, sortilin promotes functional expression of FABP7 and its ability to elicit lipid-dependent gene transcription. By contrast, apoE4 binding blocks sortilin-mediated sorting, causing catabolism of FABP7 and impairing lipid signaling. Reduced FABP7 levels in the brain of AD patients expressing apoE4 substantiate the relevance of these interactions for neuronal lipid homeostasis. Taken together, we document interaction of sortilin with mediators of extracellular and intracellular lipid transport that provides a mechanistic explanation for loss of a neuroprotective lipid metabolism in AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Proteínas Adaptadoras de Transporte Vesicular , Doença de Alzheimer/genética , Animais , Apolipoproteína E3 , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Proteína 7 de Ligação a Ácidos Graxos , Humanos , Lipídeos , Camundongos
2.
Eur J Neurosci ; 53(2): 390-401, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007132

RESUMO

Major depressive disorder (MDD) is one of the most severe global health problems with millions of people affected, however, the mechanisms underlying this disorder is still poorly understood. Genome-wide association studies have highlighted a link between the neutral amino acid transporter SLC6A15 and MDD. Additionally, a number of preclinical studies support the function of this transporter in modulating levels of brain neurotransmitters, stress system regulation and behavioural phenotypes related to MDD. However, the molecular and functional mechanisms involved in this interaction are still unresolved. Therefore, to investigate the effects of the SLC6A15 transporter, we used hippocampal tissue from Slc6a15-KO and wild-type mice, together with several in-vitro assays in primary hippocampal neurons. Utilizing a proteomics approach we identified differentially regulated proteins that formed a regulatory network and pathway analysis indicated significantly affected cellular domains, including metabolic, mitochondrial and structural functions. Furthermore, we observed reduced release probability at glutamatergic synapses, increased mitochondrial function, higher GSH/GSSG redox ratio and an improved neurite outgrowth in primary neurons lacking SLC6A15. In summary, we hypothesize that by controlling the intracellular concentrations of neutral amino acids, SLC6A15 affects mitochondrial activity, which could lead to alterations in neuronal structure and activity. These data provide further indication that a pharmacological or genetic reduction of SLC6A15 activity may indeed be a promising approach for antidepressant therapy.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Transtorno Depressivo Maior , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Estudo de Associação Genômica Ampla , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo , Fatores de Risco
3.
iScience ; 27(1): 108725, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226160

RESUMO

Sorting receptor SORCS2 is a stress-response factor protecting neurons from acute insults, such as during epilepsy. SORCS2 is also expressed in the pancreas, yet its action in this tissue remains unknown. Combining metabolic studies in SORCS2-deficient mice with ex vivo functional analyses and single-cell transcriptomics of pancreatic tissues, we identified a role for SORCS2 in protective stress response in pancreatic islets, essential to sustain insulin release. We show that SORCS2 is predominantly expressed in islet alpha cells. Loss of expression coincides with inability of these cells to produce osteopontin, a secreted factor that facilitates insulin release from stressed beta cells. In line with diminished osteopontin levels, beta cells in SORCS2-deficient islets show gene expression patterns indicative of aggravated cell stress, and exhibit defects in insulin granule maturation and a blunted glucose response. These findings corroborate a function for SORCS2 in protective stress response that extends to metabolism.

4.
Mol Neurobiol ; 57(2): 848-859, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31493240

RESUMO

Parkinson's disease (PD) is a highly prevalent neurodegenerative disease for which no disease-modifying treatments are available, mainly because knowledge about its pathogenic mechanism is still incomplete. Recently, a key role for lipids emerged, but lipid profiling of brain samples from human subjects is demanding. Here, we used an unbiased approach, lipidomics, to determine PD-linked changes in the lipid profile of a well-established cell model for PD, the catecholaminergic neuronal cell line SH-SY5Y treated with the neurotoxin 6-hydroxydopamine (6-OHDA). We observed changes in multiple lipid classes, including phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM), and total cholesterol, in 6-OHDA-treated SH-SY5Y cells. Furthermore, we found differences in the length and degree of unsaturation of the fatty acyl chains, indicating changes in their metabolism. Except for the observed decreased PS levels, the alterations in PC, PG, PI, and cholesterol levels are in agreement with the results of previous studies on PD-patient material. Opposite to what has been previously described, the cholesterol-lowering drug statins did not have a protective effect, while low doses of cholesterol supplementation partially protected SH-SY5Y cells from 6-OHDA toxicity. However, cholesterol supplementation triggered neuronal differentiation, which could have confounded the results of cholesterol modulation. Taken together, our results show that 6-OHDA-treated SH-SY5Y cells display many lipid changes also found in PD patient and animal model brains, although the SH-SY5Y cell model seems less suitable to study the involvement of cholesterol in PD initiation and progression.


Assuntos
Lipídeos/análise , Modelos Biológicos , Oxidopamina/toxicidade , Doença de Parkinson/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Lipidômica , Sinvastatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA