Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(2): 372-386.e17, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30270042

RESUMO

Intestinal mesenchymal cells play essential roles in epithelial homeostasis, matrix remodeling, immunity, and inflammation. But the extent of heterogeneity within the colonic mesenchyme in these processes remains unknown. Using unbiased single-cell profiling of over 16,500 colonic mesenchymal cells, we reveal four subsets of fibroblasts expressing divergent transcriptional regulators and functional pathways, in addition to pericytes and myofibroblasts. We identified a niche population located in proximity to epithelial crypts expressing SOX6, F3 (CD142), and WNT genes essential for colonic epithelial stem cell function. In colitis, we observed dysregulation of this niche and emergence of an activated mesenchymal population. This subset expressed TNF superfamily member 14 (TNFSF14), fibroblastic reticular cell-associated genes, IL-33, and Lysyl oxidases. Further, it induced factors that impaired epithelial proliferation and maturation and contributed to oxidative stress and disease severity in vivo. Our work defines how the colonic mesenchyme remodels to fuel inflammation and barrier dysfunction in IBD.


Assuntos
Doenças Inflamatórias Intestinais/fisiopatologia , Mesoderma/fisiologia , Animais , Proliferação de Células , Colite/genética , Colite/fisiopatologia , Colo/fisiologia , Células Epiteliais/metabolismo , Fibroblastos/fisiologia , Heterogeneidade Genética , Homeostase , Humanos , Inflamação , Mucosa Intestinal/imunologia , Mucosa Intestinal/fisiologia , Intestinos/imunologia , Intestinos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos , Pericitos , Células RAW 264.7 , Fatores de Transcrição SOXD/fisiologia , Análise de Célula Única/métodos , Tromboplastina/fisiologia , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Via de Sinalização Wnt/fisiologia
2.
J Biol Chem ; 299(8): 104917, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315788

RESUMO

Although aging is associated with progressive adiposity and a decline in liver function, the underlying molecular mechanisms and metabolic interplay are incompletely understood. Here, we demonstrate that aging induces hepatic protein kinase Cbeta (PKCß) expression, while hepatocyte PKCß deficiency (PKCßHep-/-) in mice significantly attenuates obesity in aged mice fed a high-fat diet. Compared with control PKCßfl/fl mice, PKCßHep-/- mice showed elevated energy expenditure with augmentation of oxygen consumption and carbon dioxide production which was dependent on ß3-adrenergic receptor signaling, thereby favoring negative energy balance. This effect was accompanied by induction of thermogenic genes in brown adipose tissue (BAT) and increased BAT respiratory capacity, as well as a shift to oxidative muscle fiber type with an improved mitochondrial function, thereby enhancing oxidative capacity of thermogenic tissues. Furthermore, in PKCßHep-/- mice, we determined that PKCß overexpression in the liver mitigated elevated expression of thermogenic genes in BAT. In conclusion, our study thus establishes hepatocyte PKCß induction as a critical component of pathophysiological energy metabolism by promoting progressive hepatic and extrahepatic metabolic derangements in energy homeostasis, contributing to late-onset obesity. These findings have potential implications for augmenting thermogenesis as a means of combating aging-induced obesity.


Assuntos
Fígado , Obesidade , Proteína Quinase C beta , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Oxirredução , Proteína Quinase C beta/deficiência , Proteína Quinase C beta/genética , Proteína Quinase C beta/metabolismo , Regulação Enzimológica da Expressão Gênica , Envelhecimento , Transdução de Sinais
3.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108047

RESUMO

Liposomes and other types of nanoparticles are increasingly being explored for drug delivery in a variety of diseases. There is an impetus in the field to exploit different types of ligands to functionalize nanoparticles to guide them to the diseased site. Most of this work has been conducted in the cancer field, with relatively much less information from autoimmune diseases, such as rheumatoid arthritis (RA). Furthermore, in RA, many drugs are self-administered by patients subcutaneously (SC). In this context, we have examined the attributes of liposomes functionalized with a novel joint-homing peptide (denoted ART-1) for arthritis therapy using the SC route. This peptide was previously identified following phage peptide library screening in the rat adjuvant arthritis (AA) model. Our results show a distinct effect of this peptide ligand on increasing the zeta potential of liposomes. Furthermore, liposomes injected SC into arthritic rats showed preferential homing to arthritic joints, following a migration profile in vivo similar to that of intravenously injected liposomes, except for a less steep decline after the peak. Finally, liposomal dexamethasone administered SC was more effective than the unpackaged (free) drug in suppressing arthritis progression in rats. We suggest that with suitable modifications, this SC liposomal treatment modality can be adapted for human RA therapy.


Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Ratos , Animais , Lipossomos/uso terapêutico , Ligantes , Sistemas de Liberação de Medicamentos , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Peptídeos/uso terapêutico
4.
Clin Exp Allergy ; 52(2): 250-264, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34757674

RESUMO

BACKGROUND: Excessive production of IgE plays a major role in the pathology of food allergy. In an attempt to identify anti-IgE natural products, Arctium Lappa was one of the most effective herbs among approximately 300 screened medicinal herbs. However, little is known about its anti-IgE compounds. OBJECTIVE: To identify compounds from Arctium Lappa for targeted therapy on IgE production and explore their underlying mechanisms. METHODS: Liquid-liquid extraction and column chromatographic methods were used to purify the compounds. IgE inhibitory effects were determined on IgE-producing human myeloma U266 cells, peanut-allergic murine model and PBMCs from food-allergic patients. Genes involved in IgE inhibition in PBMCs were studied by RNA sequencing. RESULTS: The main compounds isolated were identified as arctiin and arctigenin. Both compounds significantly inhibited IgE production in U266 cells, with arctigenin the most potent (IC50=5.09µg/mL). Arctigenin (at a dose of 13 mg/kg) markedly reduced peanut-specific IgE levels, blocked hypothermia and histamine release in a peanut-allergic mouse model. Arctigenin also significantly reduced IgE production and Th2 cytokines (IL-5, IL-13) by PBMCs. We found 479 differentially expressed genes in PBMCs with arctigenin treatment (p < .001 and fold-change ≥1.5), involving 24 gene ontology terms (p < .001, FDR <0.05); cell division was the most significant. Eleven genes including UBE2C and BCL6 were validated by qPCR. CONCLUSION: Arctigenin markedly inhibited IgE production in U266 cells, peanut-allergic murine model and PBMCs from allergic patients by down-regulating cell division, cell cycle-related genes and up-regulating anti-inflammatory factors.


Assuntos
Hipersensibilidade Alimentar , Hipersensibilidade a Amendoim , Animais , Anticorpos Anti-Idiotípicos , Hipersensibilidade Alimentar/tratamento farmacológico , Furanos , Humanos , Lignanas , Camundongos , Hipersensibilidade a Amendoim/tratamento farmacológico , Extratos Vegetais/química , Transcriptoma
5.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613560

RESUMO

Inflammation is an integral part of autoimmune diseases, which are caused by dysregulation of the immune system. This dysregulation involves an imbalance between pro-inflammatory versus anti-inflammatory mediators. These mediators include various cytokines and chemokines; defined subsets of T helper/T regulatory cells, M1/M2 macrophages, activating/tolerogenic dendritic cells, and antibody-producing/regulatory B cells. Despite the availability of many anti-inflammatory/immunomodulatory drugs, the severe adverse reactions associated with their long-term use and often their high costs are impediments in effectively controlling the disease process. Accordingly, suitable alternatives are being sought for these conventional drugs. Natural products offer promising adjuncts/alternatives in this regard. The availability of specific compounds isolated from dietary/medicinal plant extracts have permitted rigorous studies on their disease-modulating activities and the mechanisms involved therein. Here, we describe the basic characteristics, mechanisms of action, and preventive/therapeutic applications of 5 well-characterized natural product compounds (Resveratrol, Curcumin, Boswellic acids, Epigallocatechin-3-gallate, and Triptolide). These compounds have been tested extensively in animal models of autoimmunity as well as in limited clinical trials in patients having the corresponding diseases. We have focused our description on predominantly T cell-mediated diseases, such as rheumatoid arthritis, multiple sclerosis, Type 1 diabetes, ulcerative colitis, and psoriasis.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Produtos Biológicos , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Inflamação , Artrite Reumatoide/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Macrófagos
6.
Crit Rev Immunol ; 40(4): 329-339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33426821

RESUMO

Autoimmunity results from the breakdown of immune tolerance to defined target self antigens. Like any foreign antigen, a self antigen is continuously processed by antigen-presenting cells (APCs) and its epitopes are displayed by the major histocompatibility complex on the cell surface (dominant epitopes). However, this self antigen fails to induce a T cell response as the T cells against its dominant epitopes have been purged in the thymus during negative selection. In contrast, the T cells against poorly processed (cryptic) self epitopes escape tolerance induction in the thymus and make it to the periphery. Such T cells are generally harmless as their cognate epitopes in the periphery are not presented efficiently. But, under conditions of inflammation and immune activation, previously cryptic epitopes can be revealed on the APC surface for activation of ambient T cells. This can initiate autoimmunity in individuals who are susceptible owing to their genetic and environmental constellation. Subsequent waves of enhanced processing of other epitopes on the same or different self antigens then cause "diversification" or "spreading" of the initial T cell response, resulting in propagation of autoimmunity. However, depending on the disease process and the self antigen involved, "epitope spreading" may instead contribute to natural regression of autoimmunity. This landmark conceptual framework developed by Eli Sercarz and his team ties together determinant hierarchy, selection of epitope-specific T cells, and the induction/progression of autoimmunity. I am extremely fortunate to have worked with Eli and to have been a part of this fascinating research endeavor.


Assuntos
Apresentação de Antígeno , Autoantígenos , Autoimunidade , Epitopos , Humanos , Linfócitos T
7.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670600

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the synovial joints. Inflammation, new blood vessel formation (angiogenesis) and bone resorption (osteoclastogenesis) are three key processes involved in the joint damage and deformities of arthritis. Various gut microbiota-derived metabolites are implicated in RA pathogenesis. However, there is barely any information about the impact of two such metabolites, indole-3-aldehyde (IAld) and indole-3-acetic acid (I3AA), on arthritis-related processes. We conducted a comparative analysis of IAld and I3AA using established cell-based models to understand how they might influence RA pathogenesis. Although structurally similar, the bioactivities of these two metabolites were profoundly different. IAld but not I3AA, inhibited the expression of pro-inflammatory cytokines (IL-1ß and IL-6) in RAW 264.7 (RAW) cells stimulated with heat-killed M. tuberculosis sonicate (Mtb) and lipopolysaccharide (LPS). IAld also exhibited pro-angiogenic activity and pro-osteoclastogenic activity. In contrast, I3AA exhibited anti-angiogenic activity on endothelial cell tube formation but had no effect on osteoclastogenesis. Both IAld and I3AA have been proposed as aryl hydrocarbon receptor (AhR) agonists. Use of CH-223191, an inhibitor of the AhR, suppressed the anti-angiogenic activity of I3AA but failed to mitigate the effects of IAld. Further investigation of the anti-inflammatory activities of IAld and I3AA in LPS-treated RAW cells indicated that inhibition of MyD88-dependent activation of NF-κB and MAPK pathways was not likely involved. Our results suggest that the relative bioavailability of these indole derivatives may differentially impact RA progression and possibly other diseases that share similar cellular processes.


Assuntos
Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Citocinas/imunologia , Ácidos Indolacéticos/imunologia , Indóis/imunologia , Microbiota/imunologia , Animais , Artrite Reumatoide/metabolismo , Doenças Autoimunes/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Temperatura Alta , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Indóis/metabolismo , Indóis/farmacologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/imunologia , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/imunologia , Células RAW 264.7
8.
Clin Immunol ; 212: 108361, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32058071

RESUMO

Until recently, autoimmune disease research has primarily been focused on elucidating the role of the adaptive immune system. In the past decade or so, the role of the innate immune system in the pathogenesis of autoimmunity has increasingly been realized. Recent findings have elucidated paradigm-shifting concepts, for example, the implications of "trained immunity" and a dysbiotic microbiome in the susceptibility of predisposed individuals to clinical autoimmunity. In addition, the application of modern technologies such as the quantum dot (Qdot) system and 'Omics' (e.g., genomics, proteomics, and metabolomics) data-processing tools has proven fruitful in revisiting mechanisms underlying autoimmune pathogenesis and in identifying novel therapeutic targets. This review highlights recent findings discussed at the American Autoimmune Related Disease Association (AARDA) 2019 colloquium. The findings covering autoimmune diseases and autoinflammatory diseases illustrate how new developments in common innate immune pathways can contribute to the better understanding and management of these immune-mediated disorders.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Imunidade Inata/imunologia , Memória Imunológica/imunologia , Inflamação/imunologia , Alarminas/imunologia , Animais , Disbiose/imunologia , Doenças Hereditárias Autoinflamatórias/imunologia , Humanos , Microbiota/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia
9.
Mol Cell Probes ; 51: 101530, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32035108

RESUMO

Using phage peptide library screening, we identified peptide-encoding phages that selectively home to the inflamed central nervous system (CNS) of mice with experimental autoimmune encephalomyelitis (EAE), a model of human multiple sclerosis (MS). A phage peptide display library encoding cyclic 9-amino-acid random peptides was first screened ex-vivo for binding to the CNS tissue of EAE mice, followed by in vivo screening in the diseased mice. Phage insert sequences that were present at a higher frequency in the CNS of EAE mice than in the normal (control) mice were identified by DNA sequencing. One of the phages selected in this manner, denoted as MS-1, was shown to selectively recognize CNS tissue in EAE mice. Individually cloned phages with this insert preferentially homed to EAE CNS after an intravenous injection. Similarly, systemically-administered fluorescence-labeled synthetic MS-1 peptide showed selective accumulation in the spinal cord of EAE mice. We suggest that peptide MS-1 might be useful for targeted drug delivery to CNS in EAE/MS.


Assuntos
Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Peptídeos/metabolismo , Animais , Encéfalo/metabolismo , Biologia Computacional , Encefalomielite Autoimune Experimental/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Biblioteca de Peptídeos , Peptídeos/genética , Medula Espinal/metabolismo
10.
Kidney Int ; 95(4S): S1-S33, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30904051

RESUMO

The global nephrology community recognizes the need for a cohesive strategy to address the growing problem of end-stage kidney disease (ESKD). In March 2018, the International Society of Nephrology hosted a summit on integrated ESKD care, including 92 individuals from around the globe with diverse expertise and professional backgrounds. The attendees were from 41 countries, including 16 participants from 11 low- and lower-middle-income countries. The purpose was to develop a strategic plan to improve worldwide access to integrated ESKD care, by identifying and prioritizing key activities across 8 themes: (i) estimates of ESKD burden and treatment coverage, (ii) advocacy, (iii) education and training/workforce, (iv) financing/funding models, (v) ethics, (vi) dialysis, (vii) transplantation, and (viii) conservative care. Action plans with prioritized lists of goals, activities, and key deliverables, and an overarching performance framework were developed for each theme. Examples of these key deliverables include improved data availability, integration of core registry measures and analysis to inform development of health care policy; a framework for advocacy; improved and continued stakeholder engagement; improved workforce training; equitable, efficient, and cost-effective funding models; greater understanding and greater application of ethical principles in practice and policy; definition and application of standards for safe and sustainable dialysis treatment and a set of measurable quality parameters; and integration of dialysis, transplantation, and comprehensive conservative care as ESKD treatment options within the context of overall health priorities. Intended users of the action plans include clinicians, patients and their families, scientists, industry partners, government decision makers, and advocacy organizations. Implementation of this integrated and comprehensive plan is intended to improve quality and access to care and thereby reduce serious health-related suffering of adults and children affected by ESKD worldwide.


Assuntos
Países em Desenvolvimento , Planejamento em Saúde , Acessibilidade aos Serviços de Saúde , Falência Renal Crônica/terapia , Terapia de Substituição Renal/economia , Cobertura Universal do Seguro de Saúde , Tratamento Conservador , Carga Global da Doença , Saúde Global , Ocupações em Saúde/educação , Política de Saúde , Acessibilidade aos Serviços de Saúde/economia , Acessibilidade aos Serviços de Saúde/ética , Mão de Obra em Saúde , Humanos , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/prevenção & controle , Defesa do Paciente , Terapia de Substituição Renal/efeitos adversos , Terapia de Substituição Renal/ética , Terapia de Substituição Renal/normas , Cobertura Universal do Seguro de Saúde/economia
11.
Cell Immunol ; 339: 59-67, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30638679

RESUMO

Observations in patients with autoimmune diseases and studies in animal models of autoimmunity have revealed that external environmental factors including exposure to microbes and the state of the host gut microbiota can influence susceptibility to autoimmunity and subsequent disease development. Mechanisms underlying these outcomes continue to be elucidated. These include deviation of the cytokine response and imbalance between pathogenic versus regulatory T cell subsets. Furthermore, specific commensal organisms are associated with enhanced severity of arthritis in susceptible individuals, while exposure to certain microbes or helminths can afford protection against this disease. In addition, the role of metabolites (e.g., short-chain fatty acids, tryptophan catabolites), produced either by the microbes themselves or from their action on dietary products, in modulation of arthritis is increasingly being realized. In this context, re-setting of the microbial dysbiosis in RA using prebiotics, probiotics, or fecal microbial transplant is emerging as a promising approach for the prevention and treatment of arthritis. It is hoped that advances in defining the interplay between gut microbiota, dietary products, and bioactive metabolites would help in the development of therapeutic regimen customized for the needs of individual patients in the near future.


Assuntos
Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Microbioma Gastrointestinal/imunologia , Animais , Disbiose/imunologia , Humanos , Subpopulações de Linfócitos T/imunologia
12.
Inflamm Res ; 68(4): 285-296, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30820608

RESUMO

OBJECTIVE AND DESIGN: Multiple sclerosis (MS) is a debilitating autoimmune disease involving immune dysregulation of the pathogenic T helper 17 (Th17) versus protective T regulatory (Treg) cell subsets, besides other cellular aberrations. Studies on the mechanisms underlying these changes have unraveled the involvement of mitogen-activated protein kinase (MAPK) pathway in the disease process. We describe here a gene expression- and bioinformatics-based study showing that celastrol, a natural triterpenoid, acting via MAPK pathway regulates the downstream genes encoding serum/glucocorticoid regulated kinase 1 (SGK1), which plays a vital role in Th17/Treg differentiation, and brain-derived neurotrophic factor (BDNF), which is a neurotrophic factor, thereby offering protection against experimental autoimmune encephalomyelitis (EAE) in mice. METHODS: We first tested the gene expression profile of splenocytes of EAE mice in response to the disease-related antigen, myelin oligodendrocyte glycoprotein (MOG), and then examined the effect of celastrol on that profile. RESULTS: Interestingly, celastrol reversed the expression of many MOG-induced genes involved in inflammation and immune pathology. The MAPK pathway involving p38MAPK and ERK was identified as one of the mediators of celastrol action. It involved suppression of SGK1 but upregulation of BDNF, which then contributed to protection against EAE. CONCLUSION: Our results not only provide novel insights into disease pathogenesis, but also offer promising therapeutic targets for MS.


Assuntos
Anti-Inflamatórios , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fatores Imunológicos , Triterpenos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo/genética , Citocinas/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/imunologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/imunologia , Glicoproteína Mielina-Oligodendrócito , Triterpenos Pentacíclicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Baço/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico
13.
Int J Mol Sci ; 19(8)2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081592

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease of the joints affecting about 0.3⁻1% of the population in different countries. About 50⁻60 percent of RA patients respond to presently used drugs. Moreover, the current biomarkers for RA have inherent limitations. Consequently, there is a need for additional, new biomarkers for monitoring disease activity and responsiveness to therapy of RA patients. We examined the micro-RNA (miRNA) profile of immune (lymphoid) cells of arthritic Lewis rats and arthritic rats treated with celastrol, a natural triterpenoid. Experimental and bioinformatics analyses revealed 8 miRNAs (miR-22, miR-27a, miR-96, miR-142, miR-223, miR-296, miR-298, and miR-451) and their target genes in functional pathways important for RA pathogenesis. Interestingly, 6 of them (miR-22, miR-27a, miR-96, miR-142, miR-223, and miR-296) were further modulated by celastrol treatment. Interestingly, serum levels of miR-142, miR-155, and miR-223 were higher in arthritic versus control rats, whereas miR-212 showed increased expression in celastrol-treated rats compared with arthritic rats or control rats. This is the first study on comprehensive miRNA expression profiling in the adjuvant-induced arthritis (AA) model and it also has revealed new miRNA targets for celastrol in arthritis. We suggest that subsets of the above miRNAs may serve as novel biomarkers of disease activity and therapeutic response in arthritis.


Assuntos
Artrite Reumatoide/sangue , Doenças Autoimunes/sangue , MicroRNAs/sangue , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/genética , Células Cultivadas , Masculino , Medicina Tradicional Chinesa , Triterpenos Pentacíclicos , Ratos , Triterpenos/uso terapêutico
14.
Int J Mol Sci ; 19(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544973

RESUMO

Multiple sclerosis (MS) is a debilitating autoimmune disease affecting over 2.3 million people worldwide, and it is characterized by inflammation and demyelination of nerve cells. The currently available biomarkers for the diagnosis and management of MS have inherent limitations, therefore, additional new biomarkers are needed. We studied the microRNA (miRNA) profile of splenocytes of mice having experimental autoimmune encephalomyelitis (EAE), a model of human MS. A miRNA-microarray analysis revealed increased expression of nine miRNAs (let-7e, miR-23b, miR-31, miR-99b, miR-125a, miR-146b, miR-155, miR-193b, and miR-221) following EAE development. Interestingly, serum levels of miR-99b, miR-125a, and miR-146b were significantly higher in EAE mice compared to normal mice. Bioinformatics analysis revealed the experimentally validated as well as predicted gene targets of specific miRNAs that are important for disease progression in MS. Specifically, we observed inverse correlation in the levels of miR-99b versus LIF, and between miR-125a versus BDNF and LIF. Our results suggest that above-mentioned miRNAs may play a crucial role in the pathogenesis of MS, and that miR-99b, miR-125a, and miR-146b in particular may serve as useful biomarkers for disease activity.


Assuntos
Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
Int J Mol Sci ; 19(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149545

RESUMO

Rheumatoid arthritis (RA) is a chronic, debilitating illness characterized by painful swelling of the joints, inflammation of the synovial lining of the joints, and damage to cartilage and bone. Several anti-inflammatory and disease-modifying drugs are available for RA therapy. However, the prolonged use of these drugs is associated with severe side effects. Furthermore, these drugs are effective only in a proportion of RA patients. Hence, there is a need to search for new therapeutic agents that are effective yet safe. Interestingly, a variety of herbs and other natural products offer a vast resource for such anti-arthritic agents. We discuss here the basic features of RA pathogenesis; the commonly used animal models of RA; the mainstream drugs used for RA; the use of well-characterized natural products possessing anti-arthritic activity; the application of nanoparticles for efficient delivery of such products; and the interplay between dietary products and the host microbiome for maintenance of health and disease induction. We believe that with several advances in the past decade in the characterization and functional studies of natural products, the stage is set for widespread clinical testing and/or use of these products for the treatment of RA and other diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Artrite/tratamento farmacológico , Artrite/imunologia , Doenças Autoimunes/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Artrite/etiologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/etiologia , Artrite Reumatoide/patologia , Doenças Autoimunes/etiologia , Produtos Biológicos/farmacologia , Biomarcadores , Modelos Animais de Doenças , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Mediadores da Inflamação/metabolismo , Microbiota , Terapia de Alvo Molecular , Nanopartículas/química , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico
16.
Am J Physiol Gastrointest Liver Physiol ; 312(3): G266-G273, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28104587

RESUMO

Cholesterol homeostasis relies on an intricate network of cellular processes whose deregulation in response to Western type high-fat/cholesterol diets can lead to several life-threatening pathologies. Significant advances have been made in resolving the molecular identity and regulatory function of transcription factors sensitive to fat, cholesterol, or bile acids, but whether body senses the presence of both fat and cholesterol simultaneously is not known. Assessing the impact of a high-fat/cholesterol load, rather than an individual component alone, on cholesterol homeostasis is more physiologically relevant because Western diets deliver both fat and cholesterol at the same time. Moreover, dietary fat and dietary cholesterol are reported to act synergistically to impair liver cholesterol homeostasis. A key insight into the role of protein kinase C-ß (PKCß) in hepatic adaptation to high-fat/cholesterol diets was gained recently through the use of knockout mice. The emerging evidence indicates that PKCß is an important regulator of cholesterol homeostasis that ensures normal adaptation to high-fat/cholesterol intake. Consistent with this function, high-fat/cholesterol diets induce PKCß expression and signaling in the intestine and liver, while systemic PKCß deficiency promotes accumulation of cholesterol in the liver and bile. PKCß disruption results in profound dysregulation of hepatic cholesterol and bile homeostasis and imparts sensitivity to cholesterol gallstone formation. The available results support involvement of a two-pronged mechanism by which intestine and liver PKCß signaling converge on liver ERK1/2 to dictate diet-induced cholesterol and bile acid homeostasis. Collectively, PKCß is an integrator of dietary fat/cholesterol signal and mediates changes to cholesterol homeostasis.


Assuntos
Colesterol na Dieta/metabolismo , Homeostase/fisiologia , Fígado/metabolismo , Proteína Quinase C beta/metabolismo , Animais , Dieta Hiperlipídica
17.
Cytokine ; 98: 87-96, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28438552

RESUMO

Pro-inflammatory cytokines promote autoimmune inflammation and tissue damage, while anti-inflammatory cytokines help resolve inflammation and facilitate tissue repair. Over the past few decades, this general feature of cytokine-mediated events has offered a broad framework to comprehend the pathogenesis of autoimmune and other immune-mediated diseases, and to successfully develop therapeutic approaches for diseases such as rheumatoid arthritis (RA). Anti-tumor necrosis factor-α (TNF-α) therapy is a testimony in support of this endeavor. However, many patients with RA fail to respond to this or other biologics, and some patients may suffer unexpected aggravation of arthritic inflammation or other autoimmune effects. These observations combined with rapid advancements in immunology in regard to newer cytokines and T cell subsets have enforced a re-evaluation of the perceived pathogenic attribute of the pro-inflammatory cytokines. Studies conducted by others and us in experimental models of arthritis involving direct administration of IFN-γ or TNF-α; in vivo neutralization of the cytokine; the use of animals deficient in the cytokine or its receptor; and the impact of the cytokine or anti-cytokine therapy on defined T cell subsets have revealed paradoxical anti-inflammatory and immunoregulatory attributes of these two cytokines. Similar studies in other models of autoimmunity as well as limited studies in arthritis patients have also unveiled the disease-protective effects of these pro-inflammatory cytokines. A major mechanism in this regard is the altered balance between the pathogenic T helper 17 (Th17) and protective T regulatory (Treg) cells in favor of the latter. However, it is essential to consider that this aspect of the pro-inflammatory cytokines is context-dependent such that the dose and timing of intervention, the experimental model of the disease under study, and the differences in individual responsiveness can influence the final outcomes. Nevertheless, the realization that pro-inflammatory cytokines can also be immunoregulatory offers a new perspective in fully understanding the pathogenesis of autoimmune diseases and in designing better therapies for controlling them.


Assuntos
Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Citocinas/imunologia , Imunomodulação , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/fisiopatologia , Humanos , Inflamação/imunologia , Interferon gama/administração & dosagem , Interferon gama/imunologia , Interferon gama/uso terapêutico , Camundongos , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Subpopulações de Linfócitos T , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/uso terapêutico
18.
J Allergy Clin Immunol ; 138(2): 536-543.e4, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27130858

RESUMO

BACKGROUND: Treatments to reverse peanut allergy remain elusive. Current clinical approaches using peanut oral/sublingual immunotherapy are promising, but concerns about safety and long-term benefit remain a barrier to wide use. Improved methods of delivering peanut-specific immunotherapy are needed. OBJECTIVE: We sought to investigate the efficacy and safety of peanut oral immunotherapy using CpG-coated poly(lactic-co-glycolic acid) nanoparticles containing peanut extract (CpG/PN-NPs) in a murine model of peanut allergy. METHODS: C3H/HeJ mice were rendered peanut allergic by means of oral sensitization with peanut and cholera toxin. Mice were then subjected to 4 weekly gavages with CpG/PN-NPs, vehicle (PBS), nanoparticles alone, peanut alone, CpG nanoparticles, or peanut nanoparticles. Untreated mice served as naive controls. After completing therapy, mice underwent 5 monthly oral peanut challenges. Anaphylaxis was evaluated by means of visual assessment of symptom scores and measurement of body temperature and plasma histamine levels. Peanut-specific serum IgE, IgG1, and IgG2a levels were measured by using ELISA, as were cytokine recall responses in splenocyte cultures. RESULTS: Mice with peanut allergy treated with CpG/PN-NPs but not vehicle or other treatment components were significantly protected from anaphylaxis to all 5 oral peanut challenges, as indicated by lower symptom scores, less change in body temperature, and a lower increase of plasma histamine levels. Importantly, CpG/PN-NP treatment did not cause anaphylactic reactions. Treatment was associated with a sustained and significant decrease in peanut-specific IgE/IgG1 levels and an increase in peanut-specific IgG2a levels. Compared with vehicle control animals, peanut recall responses in splenocyte cultures from nanoparticle-treated mice showed significantly decreased levels of TH2 cytokines (IL-4, IL-5, and IL-13) but increased IFN-γ levels in cell supernatants. CONCLUSIONS: Preclinical findings indicate that peanut oral immunotherapy with CpG/PN-NPs might be a valuable strategy for peanut-specific immunotherapy in human subjects.


Assuntos
Alérgenos/imunologia , Arachis/efeitos adversos , Dessensibilização Imunológica , Ácido Láctico , Nanopartículas , Hipersensibilidade a Amendoim/imunologia , Ácido Poliglicólico , Alérgenos/administração & dosagem , Animais , Citocinas/sangue , Citocinas/metabolismo , Dessensibilização Imunológica/métodos , Modelos Animais de Doenças , Feminino , Histamina/sangue , Imunização , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Hipersensibilidade a Amendoim/diagnóstico , Hipersensibilidade a Amendoim/metabolismo , Hipersensibilidade a Amendoim/terapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
19.
J Allergy Clin Immunol ; 137(6): 1733-1741, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26915677

RESUMO

BACKGROUND: Phosphatidylinositol 3-kinase p110δ isoform (PI3K p110δ) activity is essential for mast cell activation, suggesting that inhibition of PI3K p110δ might be useful in treating allergic diseases. OBJECTIVE: We sought to determine the effect of the PI3K p110δ-selective inhibitor idelalisib on allergic responses. METHODS: This phase 1 randomized, double-blind, placebo-controlled, 2-period crossover study was conducted with the Vienna Challenge Chamber. Grass pollen-induced allergic symptoms were documented during screening. Eligible subjects received idelalisib (100 mg twice daily) or placebo for 7 days, with allergen challenge on day 7. After a 2-week washout period, subjects received the alternate treatment and repeated allergen challenge. Study measures included safety, nasal and nonnasal symptoms, nasal airflow, nasal secretions, basophil activation, and plasma cytokine levels. RESULTS: Forty-one patients with allergic rhinitis received idelalisib/placebo (n = 21) or placebo/idelalisib (n = 20). Idelalisib treatment was well tolerated. Mean total nasal symptom scores were lower during the combined idelalisib treatment periods compared with placebo (treatment difference [idelalisib - placebo], -1.78; 95% CI, -2.53 to -1.03; P < .001). Statistically significant differences were also observed for the combined treatment periods for total symptom scores, nasal airflow, nasal secretion weight, and nasal congestion scores. The percentage of ex vivo-activated basophils (CD63(+)/CCR3(+) cells; after stimulation with grass pollen) was substantially lower for idelalisib-treated compared with placebo-treated subjects. Plasma CCL17 and CCL22 levels were reduced after idelalisib treatment. CONCLUSION: Idelalisib treatment was well tolerated in patients with allergic rhinitis and appears to reduce allergic responses clinically and immunologically after an environmental allergen challenge.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Purinas/uso terapêutico , Quinazolinonas/uso terapêutico , Rinite Alérgica/tratamento farmacológico , Adulto , Alérgenos/imunologia , Basófilos/imunologia , Basófilos/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Volume Expiratório Forçado , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Pólen/imunologia , Purinas/farmacologia , Quinazolinonas/farmacologia , Rinite Alérgica/diagnóstico , Rinite Alérgica/metabolismo , Resultado do Tratamento , Adulto Jovem
20.
Pharmacol Res ; 113(Pt A): 265-275, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27597642

RESUMO

Elevated production of arachidonic acid (AA)-derived pro-inflammatory eicosanoids due to the concerted action of secretory phospholipase A2 group IIA (sPLA2IIA), 5-lipoxygenase (5-LOX) and cyclooxygenase-2 (COX-2) is a common feature of many inflammatory disorders. Hence, modulation of the bioactivity of these 3 enzymes is an important strategy to control inflammation. However, the failure of drugs specific for an individual enzyme (sPLA2IIA-, 5-LOX- or COX-2) and the success of 5-LOX/COX-2 dual inhibitors in effectively controlling inflammation in clinical trials prompted us to evaluate a common inhibitor for sPLA2IIA, 5-LOX and COX-2 enzymes. Celastrol, a quinone methide triterpene, was selected in this regard through molecular docking studies. We provide the first evidence for celastrol's ability to inhibit the catalytic activity of sPLA2IIA, 5-LOX and COX-2 enzymes. Celastrol significantly inhibited the catalytic activity of sPLA2IIA (IC50=6µM) in vitro, which is independent of substrate and calcium concentration. In addition, celastrol inhibited the catalytic activities of 5-LOX (IC50=5µM) and COX-2 (IC50=20µM) in vitro; sPLA2IIA-induced edema and carrageenan-induced edema in mice; and lipopolysaccharide-stimulated production of PGE2 in human neutrophils. Thus, celastrol modulates inflammatory responses by targeting multiple enzymes of AA pathway.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Catálise/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Fosfolipases A2 do Grupo II/metabolismo , Inflamação/tratamento farmacológico , Triterpenos/farmacologia , Animais , Cálcio/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dinoprostona/metabolismo , Edema/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Triterpenos Pentacíclicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA