Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 65, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281222

RESUMO

Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time at which GLIS3 target genes, such as Slc5a5 (Nis), become expressed. This, together with observations showing that ubiquitous Glis3KO mice do not display major changes in prenatal thyroid gland morphology, indicated that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of GLIS3 in postnatal thyroid suggested a link between GLIS3 protein expression and blood TSH levels. This was supported by data showing that treatment with TSH, cAMP, or adenylyl cyclase activators or expression of constitutively active PKA enhanced GLIS3 protein stability and transcriptional activity, indicating that GLIS3 activity is regulated at least in part by TSH/TSHR-mediated activation of PKA. The TSH-dependent increase in GLIS3 transcriptional activity would be critical for the induction of GLIS3 target gene expression, including several thyroid hormone (TH) biosynthetic genes, in thyroid follicular cells of mice fed a low iodine diet (LID) when blood TSH levels are highly elevated. Like TH biosynthetic genes, the expression of cell cycle genes is suppressed in ubiquitous Glis3KO mice fed a LID; however, in thyroid-specific Glis3 knockout mice, the expression of cell cycle genes was not repressed, in contrast to TH biosynthetic genes. This indicated that the inhibition of cell cycle genes in ubiquitous Glis3KO mice is dependent on changes in gene expression in GLIS3 target tissues other than the thyroid.


Assuntos
Glândula Tireoide , Fatores de Transcrição , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Proteínas Repressoras/genética , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Tireotropina/genética , Tireotropina/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
2.
J Biol Chem ; 297(6): 101358, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756888

RESUMO

Preserving optimal mitochondrial function is critical in the heart, which is the most ATP-avid organ in the body. Recently, we showed that global deficiency of the nuclear receptor RORα in the "staggerer" mouse exacerbates angiotensin II-induced cardiac hypertrophy and compromises cardiomyocyte mitochondrial function. However, the mechanisms underlying these observations have not been defined previously. Here, we used pharmacological and genetic gain- and loss-of-function tools to demonstrate that RORα regulates cardiomyocyte mitophagy to preserve mitochondrial abundance and function. We found that cardiomyocyte mitochondria in staggerer mice with lack of functional RORα were less numerous and exhibited fewer mitophagy events than those in WT controls. The hearts of our novel cardiomyocyte-specific RORα KO mouse line demonstrated impaired contractile function, enhanced oxidative stress, increased apoptosis, and reduced autophagic flux relative to Cre(-) littermates. We found that cardiomyocyte mitochondria in "staggerer" mice with lack of functional RORα were upregulated by hypoxia, a classical inducer of mitophagy. The loss of RORα blunted mitophagy and broadly compromised mitochondrial function in normoxic and hypoxic conditions in vivo and in vitro. We also show that RORα is a direct transcriptional regulator of the mitophagy mediator caveolin-3 in cardiomyocytes and that enhanced expression of RORα increases caveolin-3 abundance and enhances mitophagy. Finally, knockdown of RORα impairs cardiomyocyte mitophagy, compromises mitochondrial function, and induces apoptosis, but these defects could be rescued by caveolin-3 overexpression. Collectively, these findings reveal a novel role for RORα in regulating mitophagy through caveolin-3 and expand our currently limited understanding of the mechanisms underlying RORα-mediated cardioprotection.


Assuntos
Caveolina 3/fisiologia , Mitocôndrias Cardíacas/fisiologia , Mitofagia/fisiologia , Miócitos Cardíacos/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Animais , Camundongos , Mitocôndrias Cardíacas/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 316(1): H186-H200, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387679

RESUMO

The nuclear receptor retinoic acid-related orphan receptor-α (RORα) regulates numerous critical biological processes, including central nervous system development, lymphocyte differentiation, and lipid metabolism. RORα has been recently identified in the heart, but very little is known about its role in cardiac physiology. We sought to determine whether RORα regulates myocardial hypertrophy and cardiomyocyte survival in the context of angiotensin II (ANG II) stimulation. For in vivo characterization of the function of RORα in the context of pathological cardiac hypertrophy and heart failure, we used the "staggerer" (RORαsg/sg) mouse, which harbors a germline mutation encoding a truncated and globally nonfunctional RORα. RORαsg/sg and wild-type littermate mice were infused with ANG II or vehicle for 14 days. For in vitro experiments, we overexpressed or silenced RORα in neonatal rat ventricular myocytes (NRVMs) and human cardiac fibroblasts exposed to ANG II. RORαsg/sg mice developed exaggerated myocardial hypertrophy and contractile dysfunction after ANG II treatment. In vitro gain- and loss-of-function experiments were consistent with the discovery that RORα inhibits ANG II-induced pathological hypertrophy and cardiomyocyte death in vivo. RORα directly repressed IL-6 transcription. Loss of RORα function led to enhanced IL-6 expression, proinflammatory STAT3 activation (phopho-STAT3 Tyr705), and decreased mitochondrial number and function, oxidative stress, hypertrophy, and death of cardiomyocytes upon ANG II exposure. RORα was less abundant in failing compared with nonfailing human heart tissue. In conclusion, RORα protects against ANG II-mediated pathological hypertrophy and heart failure by suppressing the IL-6-STAT3 pathway and enhancing mitochondrial function. NEW & NOTEWORTHY Mice lacking retinoic acid-related orphan receptor-α (RORα) develop exaggerated cardiac hypertrophy after angiotensin II infusion. Loss of RORα leads to enhanced IL-6 expression and NF-κB nuclear translocation. RORα maintains mitochondrial function and reduces oxidative stress after angiotensin II. The abundance of RORα is reduced in failing mouse and human hearts.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Mutação com Perda de Função , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Angiotensina II/toxicidade , Animais , Cardiomegalia/etiologia , Cardiomegalia/genética , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias Cardíacas/metabolismo , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo
4.
Immunity ; 30(4): 576-87, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19362022

RESUMO

T helper (Th) 17 cells have been recently discovered in both mouse and human. Here we show that interleukin-1 (IL-1) signaling on T cells is critically required for the early programming of Th17 cell lineage and Th17 cell-mediated autoimmunity. IL-1 receptor1 expression in T cells, which was induced by IL-6, was necessary for the induction of experimental autoimmune encephalomyelitis and for early Th17 cell differentiation in vivo. Moreover, IL-1 signaling in T cells was required in dendritic cell-mediated Th17 cell differentiation from naive or regulatory precursors and IL-1 synergized with IL-6 and IL-23 to regulate Th17 cell differentiation and maintain cytokine expression in effector Th17 cells. Importantly, IL-1 regulated the expression of the transcription factors IRF4 and RORgammat during Th17 cell differentiation; overexpression of these two factors resulted in IL-1-independent Th17 cell polarization. Our data thus indicate a critical role of IL-1 in Th17 cell differentiation and this pathway may serve as a unique target for Th17 cell-mediated immunopathology.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Interleucina-1/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/citologia , Linfócitos T Auxiliares-Indutores/citologia , Animais , Linhagem da Célula , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Regulação para Cima
5.
Stem Cells ; 34(11): 2772-2783, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27350140

RESUMO

In this study, we identify a novel and essential role for the Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in the regulation of postnatal spermatogenesis. We show that GLIS3 is expressed in gonocytes, spermatogonial stem cells (SSCs) and spermatogonial progenitors (SPCs), but not in differentiated spermatogonia and later stages of spermatogenesis or in somatic cells. Spermatogenesis is greatly impaired in GLIS3 knockout mice. Loss of GLIS3 function causes a moderate reduction in the number of gonocytes, but greatly affects the generation of SSCs/SPCs, and as a consequence the development of spermatocytes. Gene expression profiling demonstrated that the expression of genes associated with undifferentiated spermatogonia was dramatically decreased in GLIS3-deficient mice and that the cytoplasmic-to-nuclear translocation of FOXO1, which marks the gonocyte-to-SSC transition and is necessary for SSC self-renewal, is inhibited. These observations suggest that GLIS3 promotes the gonocyte-to-SSC transition and is a critical regulator of the dynamics of early postnatal spermatogenesis. Stem Cells 2016;34:2772-2783.


Assuntos
Proteínas Repressoras/genética , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Células-Tronco/metabolismo , Testículo/metabolismo , Transativadores/genética , Animais , Diferenciação Celular , Proteínas de Ligação a DNA , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Proteínas Repressoras/deficiência , Espermatócitos/citologia , Espermatogônias/citologia , Células-Tronco/citologia , Testículo/citologia , Transativadores/deficiência
6.
Immunity ; 29(1): 138-49, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18599325

RESUMO

After activation, CD4(+) helper T (Th) cells differentiate into distinct effector subsets. Although chemokine (C-X-C motif) receptor 5-expressing T follicular helper (Tfh) cells are important in humoral immunity, their developmental regulation is unclear. Here we show that Tfh cells had a distinct gene expression profile and developed in vivo independently of the Th1 or Th2 cell lineages. Tfh cell generation was regulated by ICOS ligand (ICOSL) expressed on B cells and was dependent on interleukin-21 (IL-21), IL-6, and signal transducer and activator of transcription 3 (STAT3). However, unlike Th17 cells, differentiation of Tfh cells did not require transforming growth factor beta (TGF-beta) or Th17-specific orphan nuclear receptors RORalpha and RORgamma in vivo. Finally, naive T cells activated in vitro in the presence of IL-21 but not TGF-beta signaling preferentially acquired Tfh gene expression and promoted germinal-center reactions in vivo. This study thus demonstrates that Tfh is a distinct Th cell lineage.


Assuntos
Diferenciação Celular/imunologia , Linhagem da Célula/imunologia , Centro Germinativo/citologia , Interleucinas/imunologia , Subpopulações de Linfócitos T/citologia , Linfócitos T Auxiliares-Indutores/citologia , Transferência Adotiva , Animais , Linfócitos B/imunologia , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Centro Germinativo/imunologia , Imuno-Histoquímica , Ligante Coestimulador de Linfócitos T Induzíveis , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Interleucinas/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas/imunologia , Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
7.
Immunity ; 29(1): 44-56, 2008 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-18585065

RESUMO

Regulatory T (Treg) and T helper 17 (Th17) cells were recently proposed to be reciprocally regulated during differentiation. To understand the underlying mechanisms, we utilized a Th17 reporter mouse with a red fluorescent protein (RFP) sequence inserted into the interleukin-17F (IL-17F) gene. Using IL-17F-RFP together with a Foxp3 reporter, we found that the development of Th17 and Foxp3(+) Treg cells was associated in immune responses. Although TGF-beta receptor I signaling was required for both Foxp3 and IL-17 induction, SMAD4 was only involved in Foxp3 upregulation. Foxp3 inhibited Th17 differentiation by antagonizing the function of the transcription factors RORgammat and ROR*. In contrast, IL-6 overcame this suppressive effect of Foxp3 and, together with IL-1, induced genetic reprogramming in Foxp3(+) Treg cells. STAT3 regulated Foxp3 downregulation, whereas STAT3, RORgamma, and ROR* were required for IL-17 expression in Treg cells. Our data demonstrate molecular antagonism and plasticity of Treg and Th17 cell programs.


Assuntos
Diferenciação Celular/imunologia , Inflamação/imunologia , Subpopulações de Linfócitos T/citologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Reguladores/citologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Feminino , Citometria de Fluxo , Imunoprecipitação , Interleucina-17/imunologia , Interleucina-17/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Transdução Genética , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/metabolismo
8.
PLoS Genet ; 10(5): e1004331, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24831725

RESUMO

The hepatic circadian clock plays a key role in the daily regulation of glucose metabolism, but the precise molecular mechanisms that coordinate these two biological processes are not fully understood. In this study, we identify a novel connection between the regulation of RORγ by the clock machinery and the diurnal regulation of glucose metabolic networks. We demonstrate that particularly at daytime, mice deficient in RORγ exhibit improved insulin sensitivity and glucose tolerance due to reduced hepatic gluconeogenesis. This is associated with a reduced peak expression of several glucose metabolic genes critical in the control of gluconeogenesis and glycolysis. Genome-wide cistromic profiling, promoter and mutation analysis support the concept that RORγ regulates the transcription of several glucose metabolic genes directly by binding ROREs in their promoter regulatory region. Similar observations were made in liver-specific RORγ-deficient mice suggesting that the changes in glucose homeostasis were directly related to the loss of hepatic RORγ expression. Altogether, our study shows that RORγ regulates several glucose metabolic genes downstream of the hepatic clock and identifies a novel metabolic function for RORγ in the diurnal regulation of hepatic gluconeogenesis and insulin sensitivity. The inhibition of the activation of several metabolic gene promoters by an RORγ antagonist suggests that antagonists may provide a novel strategy in the management of metabolic diseases, including type 2 diabetes.


Assuntos
Ritmo Circadiano/genética , Glucose/metabolismo , Resistência à Insulina , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/biossíntese , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Humanos , Insulina/genética , Insulina/metabolismo , Fígado/metabolismo , Fígado/patologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Tretinoína/farmacologia
9.
Nucleic Acids Res ; 42(16): 10448-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25143535

RESUMO

The hepatic circadian clock plays a pivotal role in regulating major aspects of energy homeostasis and lipid metabolism. In this study, we show that RORγ robustly regulates the rhythmic expression of several lipid metabolic genes, including the insulin-induced gene 2a, Insig2a, elongation of very long chain fatty acids-like 3, Elovl3 and sterol 12α-hydroxylase, Cyp8b1, by enhancing their expression at ZT20-4. The time-dependent increase in their expression correlates with the rhythmic expression pattern of RORγ. The enhanced recruitment of RORγ to ROREs in their promoter region, increased histone acetylation, and reporter and mutation analysis support the concept that RORγ regulates the transcription of several lipid metabolic genes directly by binding ROREs in their promoter regulatory region. Consistent with the disrupted expression of a number of lipid metabolic genes, loss of RORγ reduced the level of several lipids in liver and blood in a ZT-preferred manner. Particularly the whole-body bile acid pool size was considerably reduced in RORγ(-/-) mice in part through its regulation of several Cyp genes. Similar observations were made in liver-specific RORγ-deficient mice. Altogether, our study indicates that RORγ functions as an important link between the circadian clock and the transcriptional regulation of several metabolic genes.


Assuntos
Relógios Circadianos/genética , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Transcrição Gênica , Acetiltransferases/genética , Animais , Ácidos e Sais Biliares/metabolismo , Elongases de Ácidos Graxos , Fígado/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Elementos de Resposta , Triglicerídeos/metabolismo
10.
Nucleic Acids Res ; 39(11): 4769-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21317191

RESUMO

Retinoic acid-related orphan receptors (RORs) and the basic helix-loop-helix-PAS transcription factor Npas2 have been implicated in the control of circadian rhythm. In this study, we demonstrate that RORγ directly regulates Npas2 expression in vivo. Although the rhythmicity of Npas2 mRNA expression was maintained in RORγ(-/-) mice, the peak level of expression was significantly reduced in several tissues, while loss of RORα had little effect. Inversely, overexpression of RORγ in hepatoma Hepa1-6 cells greatly induced the expression of Npas2. RORγ-activated Npas2 transcription directly by binding two ROREs in its proximal promoter. ChIP analysis demonstrated that RORγ was recruited to this promoter in the liver of wild-type mice, but not RORγ-deficient mice. Activation of Npas2 correlated positively with chromatin accessibility and level of H3K9 acetylation. The activation of Npas2 by RORγ was repressed by co-expression with Rev-Erbα or addition of the ROR inverse agonist T0901317. Npas2 expression was also significantly enhanced during brown adipose differentiation and that this induction was greatly suppressed in adipose cells lacking RORγ. Our results indicate that RORγ and Rev-Erbα are part of a feed-back loop that regulates the circadian expression of Npas2 suggesting a regulatory role for these receptors in Npas2-dependent physiological processes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Tecido Nervoso/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ativação Transcricional , Acetilação , Adipócitos Marrons/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Linhagem Celular , Ritmo Circadiano/genética , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/biossíntese , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Regiões Promotoras Genéticas
11.
Res Sq ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461635

RESUMO

Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time when GLIS3 target genes, such as Slc5a5 (Nis), become also expressed. We further show that Glis3KO mice do not display any major changes in prenatal thyroid gland morphology indicating that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of thyroid-specific Glis3 knockout (Glis3-Pax8Cre) mice fed either a normal or low-iodine diet (ND or LID) revealed that, in contrast to ubiquitous Glis3KO mice, thyroid follicular cell proliferation and the expression of cell cycle genes were not repressed suggesting that the inhibition of thyroid follicular cell proliferation in ubiquitous Glis3KO mice is related to loss of GLIS3 function in other cell types. However, the expression of several thyroid hormone biosynthesis-, extracellular matrix (ECM)-, and inflammation-related genes was still suppressed in Glis3-Pax8Cre mice particularly under conditions of high blood levels of thyroid stimulating hormone (TSH). We further demonstrate that treatment with TSH, protein kinase A (PKA) or adenylyl cyclase activators or expression of constitutively active PKA enhances GLIS3 protein and activity, suggesting that GLIS3 transcriptional activity is regulated in part by TSH/TSHR-mediated activation of the PKA pathway. This mechanism of regulation provides an explanation for the dramatic increase in GLIS3 protein expression and the subsequent induction of GLIS3 target genes, including several thyroid hormone biosynthetic genes, in thyroid follicular cells of mice fed a LID.

12.
Cell Biosci ; 13(1): 32, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36793061

RESUMO

BACKGROUND: Loss of the transcription factor GLI-Similar 3 (GLIS3) function causes congenital hypothyroidism (CH) in both humans and mice due to decreased expression of several thyroid hormone (TH) biosynthetic genes in thyroid follicular cells. Whether and to what extent, GLIS3 regulates thyroid gene transcription in coordination with other thyroid transcriptional factors (TFs), such as PAX8, NKX2.1 and FOXE1, is poorly understood. METHODS: PAX8, NKX2.1, and FOXE1 ChIP-Seq analysis with mouse thyroid glands and rat thyrocyte PCCl3 cells was performed and compared to that of GLIS3 to analyze the co-regulation of gene transcription in thyroid follicular cells by these TFs. RESULTS: Analysis of the PAX8, NKX2.1, and FOXE1 cistromes identified extensive overlaps between these TF binding loci and those of GLIS3 indicating that GLIS3 shares many of the same regulatory regions with PAX8, NKX2.1, and FOXE1, particularly in genes associated with TH biosynthesis, induced by thyroid stimulating hormone (TSH), and suppressed in Glis3KO thyroid glands, including Slc5a5 (Nis), Slc26a4, Cdh16, and Adm2. ChIP-QPCR analysis showed that loss of GLIS3 did not significantly affect PAX8 or NKX2.1 binding and did not cause major alterations in H3K4me3 and H3K27me3 epigenetic signals. CONCLUSIONS: Our study indicates that GLIS3 regulates transcription of TH biosynthetic and TSH-inducible genes in thyroid follicular cells in coordination with PAX8, NKX2.1, and FOXE1 by binding within the same regulatory hub. GLIS3 does not cause major changes in chromatin structure at these common regulatory regions. GLIS3 may induce transcriptional activation by enhancing the interaction of these regulatory regions with other enhancers and/or RNA Polymerase II (Pol II) complexes.

13.
J Biol Chem ; 286(6): 4749-59, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21127075

RESUMO

Gli-similar 1-3 (Glis1-3) constitute a subfamily of Krüppel-like zinc finger (ZF) transcription factors that are closely related to the Gli protein family. Mutations in GLIS2 are linked to nephronophthisis, a chronic kidney disease characterized by renal fibrosis and atrophy in children and young adults. Currently, very little information exists about the mechanism of action of Glis2, its target genes, or the signaling pathways that regulate its activity. In this study, we show that a region within ZF3 is required for the nuclear localization of Glis2. Analysis of Glis2 DNA binding demonstrated that Glis2 binds effectively to the consensus Glis binding sequence (GlisBS) (G/C)TGGGGGGT(A/C). Although Glis2 was unable to induce transactivation of a GlisBS-dependent reporter, it effectively inhibited the GlisBS-mediated transactivation by Gli1. Mutations that disrupt the tetrahedral configuration of each ZF within Glis2 abolished Glis2 binding to GlisBS and also abrogated its inhibition of Gli1-mediated transactivation. In contrast, Glis2 was able to activate the murine insulin-2 (Ins2) promoter by binding directly to two GlisBS elements located at -263 and -99 within the Ins2 promoter. Phosphomimetic mutation of Ser(245) inhibited the binding of Glis2 to GlisBS and dramatically affected its transactivation of the Ins2 promoter and its ability to inhibit GlisBS-dependent transactivation by Gli1. In this study, we demonstrate that Glis2 can function as a transcriptional activator and that post-translational modification within its DNA-binding domain can regulate its transcriptional activity. This control may play a critical role in the Glis2-dependent regulation of target genes and renal function.


Assuntos
Núcleo Celular/metabolismo , DNA/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Elementos de Resposta , Ativação Transcricional , Adulto , Animais , Núcleo Celular/genética , Criança , Pré-Escolar , DNA/genética , Células HEK293 , Células HeLa , Humanos , Insulina/biossíntese , Insulina/genética , Rim/metabolismo , Doenças Renais Císticas/congênito , Doenças Renais Císticas/genética , Doenças Renais Císticas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Fosforilação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco
14.
Cells ; 11(11)2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35681527

RESUMO

The GLI-Similar 1-3 (GLIS1-3) genes, in addition to encoding GLIS1-3 Krüppel-like zinc finger transcription factors, also generate circular GLIS (circGLIS) RNAs. GLIS1-3 regulate gene transcription by binding to GLIS binding sites in target genes, whereas circGLIS RNAs largely act as miRNA sponges. GLIS1-3 play a critical role in the regulation of many biological processes and have been implicated in various pathologies. GLIS protein activities appear to be regulated by primary cilium-dependent and -independent signaling pathways that via post-translational modifications may cause changes in the subcellular localization, proteolytic processing, and protein interactions. These modifications can affect the transcriptional activity of GLIS proteins and, consequently, the biological functions they regulate as well as their roles in disease. Recent studies have implicated GLIS1-3 proteins and circGLIS RNAs in the regulation of stemness, self-renewal, epithelial-mesenchymal transition (EMT), cell reprogramming, lineage determination, and differentiation. These biological processes are interconnected and play a critical role in embryonic development, tissue homeostasis, and cell plasticity. Dysregulation of these processes are part of many pathologies. This review provides an update on our current knowledge of the roles GLIS proteins and circGLIS RNAs in the control of these biological processes in relation to their regulation of normal physiological functions and disease.


Assuntos
Autorrenovação Celular , Fatores de Transcrição , Cílios/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
15.
Physiol Genomics ; 43(13): 818-28, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21540300

RESUMO

Retinoid-related orphan receptor (ROR)α4 is the major RORα isoform expressed in adipose tissues and liver. In this study we demonstrate that RORα-deficient staggerer mice (RORα(sg/sg)) fed with a high-fat diet (HFD) exhibited reduced adiposity and hepatic triglyceride levels compared with wild-type (WT) littermates and were resistant to the development of hepatic steatosis, adipose-associated inflammation, and insulin resistance. Gene expression profiling showed that many genes involved in triglyceride synthesis and storage, including Cidec, Cidea, and Mogat1, were expressed at much lower levels in liver of RORα(sg/sg) mice. In contrast, overexpression of RORα in mouse hepatoma Hepa1-6 cells significantly increased the expression of genes that were repressed in RORα(sg/sg) liver, including Sult1b1, Adfp, Cidea, and ApoA4. ChIP and promoter analysis suggested that several of these genes were regulated directly by RORα. In addition to reduced lipid accumulation, inflammation was greatly diminished in white adipose tissue (WAT) of RORα(sg/sg) mice fed with an HFD. The infiltration of macrophages and the expression of many immune response and proinflammatory genes, including those encoding various chemo/cytokines, Toll-like receptors, and TNF signaling proteins, were significantly reduced in RORα(sg/sg) WAT. Moreover, RORα(sg/sg) mice fed with an HFD were protected from the development of insulin resistance. RORα(sg/sg) mice consumed more oxygen and produced more carbon dioxide, suggesting increased energy expenditure in this genotype. Our study indicates that RORα plays a critical role in the regulation of several aspects of metabolic syndrome. Therefore, RORα may provide a novel therapeutic target in the management of obesity and associated metabolic diseases.


Assuntos
Fígado Gorduroso/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inflamação/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Obesidade/genética , Transcrição Gênica , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Gorduras na Dieta , Metabolismo Energético/genética , Fígado Gorduroso/complicações , Fígado Gorduroso/patologia , Intolerância à Glucose/complicações , Intolerância à Glucose/genética , Inflamação/complicações , Inflamação/patologia , Resistência à Insulina/genética , Lipogênese/genética , Camundongos , Camundongos Endogâmicos C57BL , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Obesidade/complicações , Obesidade/patologia
16.
Endocrinology ; 162(1)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107570

RESUMO

Previous studies showed that noncalcemic 20(OH)D3, a product of CYP11A1 action on vitamin D3, has antifibrotic activity in human dermal fibroblasts and in a bleomycin mouse model of scleroderma. In this study, we tested the role of retinoic acid-related orphan receptor γ (RORγ), which is expressed in skin, in the action of CYP11A1-derived secosteroids using murine fibroblasts isolated from the skin of wild-type (RORγ +/+), knockout (RORγ -/-), and heterozygote (RORγ +/-) mice. CYP11A1-derived 20(OH)D3, 20,23(OH)2D3, 1,20(OH)2D3, and 1,20,23(OH)3D3 inhibited proliferation of RORγ +/+ fibroblasts in a dose-dependent manner with a similar potency to 1,25(OH)2D3. Surprisingly, this effect was reversed in RORγ +/- and RORγ -/- fibroblasts, with the most pronounced stimulatory effect seen in RORγ -/- fibroblasts. All analogs tested inhibited TGF-ß1-induced collagen synthesis in RORγ +/+ fibroblasts and the expression of other fibrosis-related genes. This effect was curtailed or reversed in RORγ -/- fibroblasts. These results show that the antiproliferative and antifibrotic activities of the vitamin D hydroxy derivatives are dependent on a functional RORγ. The dramatic changes in the transcriptomes of fibroblasts of RORγ -/- versus wild-type mice following treatment with 20(OH)D3 or 1,20(OH)2D3 provide a molecular basis to explain, at least in part, the observed phenotypic differences.


Assuntos
Colecalciferol/análogos & derivados , Colecalciferol/farmacologia , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Animais Recém-Nascidos , Bleomicina/toxicidade , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Redução da Medicação , Feminino , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Esclerodermia Limitada
17.
Sci Adv ; 7(44): eabf6063, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705506

RESUMO

The epithelial-mesenchymal transition (EMT) and primary ciliogenesis induce stem cell properties in basal mammary stem cells (MaSCs) to promote mammogenesis, but the underlying mechanisms remain incompletely understood. Here, we show that EMT transcription factors promote ciliogenesis upon entry into intermediate EMT states by activating ciliogenesis inducers, including FGFR1. The resulting primary cilia promote ubiquitination and inactivation of a transcriptional repressor, GLIS2, which localizes to the ciliary base. We show that GLIS2 inactivation promotes MaSC stemness, and GLIS2 is required for normal mammary gland development. Moreover, GLIS2 inactivation is required to induce the proliferative and tumorigenic capacities of the mammary tumor­initiating cells (MaTICs) of claudin-low breast cancers. Claudin-low breast tumors can be segregated from other breast tumor subtypes based on a GLIS2-dependent gene expression signature. Collectively, our findings establish molecular mechanisms by which EMT programs induce ciliogenesis to control MaSC and MaTIC stemness, mammary gland development, and claudin-low breast cancer formation.

18.
Nat Commun ; 12(1): 4877, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385434

RESUMO

Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP. Magnetic resonance imaging and histopathological analysis reveal that deficiency in GLIS1 expression induces progressive degeneration of the TM, leading to inefficient AqH drainage from the anterior chamber and elevated IOP. Transcriptome and cistrome analyses identified several glaucoma- and extracellular matrix-associated genes as direct transcriptional targets of GLIS1. We also identified a significant association between GLIS1 variant rs941125 and glaucoma in humans (P = 4.73 × 10-6), further supporting a role for GLIS1 into glaucoma etiology. Our study identifies GLIS1 as a critical regulator of TM function and maintenance, AqH dynamics, and IOP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Malha Trabecular/fisiopatologia , Fatores de Transcrição/metabolismo , Animais , Humor Aquoso/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Glaucoma/genética , Glaucoma/metabolismo , Células HEK293 , Humanos , Pressão Intraocular/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq/métodos , Malha Trabecular/metabolismo , Fatores de Transcrição/genética
19.
Cerebellum ; 9(3): 310-23, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20393820

RESUMO

Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI­VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI­VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.


Assuntos
Comportamento Animal/fisiologia , Cerebelo/patologia , MAP Quinase Quinase Quinases/deficiência , Neuroglia/patologia , Animais , Cerebelo/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Aprendizagem/fisiologia , MAP Quinase Quinase Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , Neuroglia/metabolismo , Reflexo de Sobressalto/fisiologia , Comportamento Social
20.
J Immunol ; 181(12): 8391-401, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19050256

RESUMO

Th17 and regulatory T (Treg) cells play opposite roles in autoimmune diseases. However, the mechanisms underlying their proper migration to inflammatory tissues are unclear. In this study, we report that these two T cell subsets both express CCR6. CCR6 expression in Th17 cells is regulated by TGF-beta and requires two nuclear receptors, RORalpha and RORgamma. Th17 cells also express the CCR6 ligand CCL20, which is induced synergistically by TGF-beta and IL-6, which requires STAT3, RORgamma and IL-21. Th17 cells, by producing CCL20, promote migration of Th17 and Treg cells in vitro in a CCR6-dependent manner. Lack of CCR6 in Th17 cells reduces the severity of experimental autoimmune encephalomyelitis and Th17 and Treg recruitment into inflammatory tissues. Similarly, CCR6 on Treg cells is also important for their recruitment into inflammatory tissues. Our data indicate an important role of CCR6 in Treg and Th17 cell migration.


Assuntos
Quimiotaxia de Leucócito/imunologia , Mediadores da Inflamação/fisiologia , Interleucina-17/fisiologia , Receptores CCR6/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Sequência de Aminoácidos , Animais , Inibição de Migração Celular/genética , Inibição de Migração Celular/imunologia , Células Cultivadas , Quimiotaxia de Leucócito/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Receptores CCR6/biossíntese , Receptores CCR6/deficiência , Receptores CCR6/genética , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA