Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nano Lett ; 21(13): 5500-5507, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33913722

RESUMO

Sharks, marine creatures that swim fast and have an antifouling ability, possess dermal denticle structures of micrometer-size. Because the riblet geometries on the denticles reduce the shear stress by inducing the slip of fluid parallel to the stream-wise direction, shark skin has the distinguished features of low drag and antifouling. Although much attention has been given to low-drag surfaces inspired from shark skin, it remains an important challenge to accurately mimic denticle structures in the micrometer scale and to finely control their structural features. This paper presents a novel method to create shark skin-mimetic denticle structures for low drag by exploiting a photoreconfigurable azopolymer. The light-designed denticle structure exhibits superior hydrophobicity and an antifouling effect as sharks do. This work suggests that our novel photoreconfiguration technology, mimicking shark skin and systematically manipulating various structural parameters, can be used in a reliable manner for diverse applications requiring low-drag surfaces.


Assuntos
Tubarões , Animais , Biomimética , Interações Hidrofóbicas e Hidrofílicas , Pele
2.
Langmuir ; 35(26): 8816-8822, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31244255

RESUMO

We prepared F-coated rutile titanium dioxide nanoparticles (r-TiO2 NPs) via simple thermal annealing of titania NPs in poly(vinylidene fluoride) (PVDF) and demonstrated that the F-coated r-TiO2 NP-doped composite film could efficiently induce piezoelectric phase transition of non-electroactive PVDF due to highly electronegative F bonds on the surface of these NPs. In the case of a 2.0 wt % composite film, 99.20% of the non-electroactive PVDF was transformed into the electroactive phase. Additionally, utilizing the F-coated r-TiO2 NPs for a piezoelectric device led to an enhancement of the piezoelectric performance. With the 5.0 wt % composite film, the resulting piezoelectric device exhibited voltage generation of 355 mV, whereas a device with the innate r-TiO2 NPs exhibited voltage generation of only 137 mV. Furthermore, because of optical inactivity of F-coated r-TiO2 NPs, the piezoelectric films exhibited high stability under 64 h of photoirradiation at an intensity of 0.1 W/cm2. These results indicate that the F-coated r-TiO2 NP-doped composite films could be useful for various applications, including outdoor energy-harvesting, self-powered wearable devices, and portable sensors.

3.
Small ; 14(11): e1703250, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29369496

RESUMO

Directional photofluidization of azobenzene materials has provided unprecedented opportunities for the structural reconfiguration of circular holes, line gaps, ellipsoidal holes, and nanofunnel-shaped micro/nanoarchitectures. However, all the reconfigured structures have a parabolic or round wall due to the tendency of the photofluidized azobenezene materials to minimize the surface area, which limits their use as a reconfigurable etch-mask for the lithography process. In this work, a simple method is presented that can change the round walls of azopolymer architectures into rectangular walls, which is named rectangularization. By irradiating far-field light on reconfigured azopolymer in a conformal contact with a flat polydimethylsiloxane (PDMS) film, the round wall transforms to a rectangular one because the azopolymer adheres along the PDMS surface while being photofluidized. As a result, the rectangularization process creates a variety of structural features and sizes ranging from a few micrometers to 150 nm having a rectangular wall. By exploiting the rectangularization process, the concept of a photo-reconfigurable etch mask is achieved, which transfers the mask patterns to a silicon pattern with a high structural fidelity and imparts a considerable flexibility to the lithography process.

4.
Polymers (Basel) ; 15(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38231939

RESUMO

Lithium-ion batteries (LIBs) have become indispensable energy-storage devices for various applications, ranging from portable electronics to electric vehicles and renewable energy systems. The performance and reliability of LIBs depend on several key components, including the electrodes, separators, and electrolytes. Among these, the choice of binder materials for the electrodes plays a critical role in determining the overall performance and durability of LIBs. This review introduces polymer binders that have been traditionally used in the cathode, anode, and separator materials of LIBs. Furthermore, it explores the problems identified in traditional polymer binders and examines the research trends in next-generation polymer binder materials for lithium-ion batteries as alternatives. To date, the widespread use of N-methyl-2-pyrrolidone (NMP) as a solvent in lithium battery electrode production has been a standard practice. However, recent concerns regarding its high toxicity have prompted increased environmental scrutiny and the imposition of strict chemical regulations. As a result, there is a growing urgency to explore alternatives that are both environmentally benign and safer for use in battery manufacturing. This pressing need is further underscored by the rising demand for diverse binder research within the lithium battery industry. In light of the current emphasis on sustainability and environmental responsibility, it is imperative to investigate a range of binder options that can align with the evolving landscape of green and eco-conscious battery production. In this review paper, we introduce various binder options that can align with the evolving landscape of environmentally friendly and sustainable battery production, considering the current emphasis on battery performance enhancement and environmental responsibility.

5.
ACS Appl Mater Interfaces ; 14(8): 10825-10835, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176848

RESUMO

This study investigates a highly flexible/stretchable and mechanically durable superhydrophobic/superoleophilic coating for efficient oil/water separation and oil absorption. The coating is applied via a simple immersion process using a mixed solution of a biocompatible adhesive (ethyl cyanoacrylate, ECA), a highly stretchable polymer (polycaprolactone, PCL), and superhydrophobic/superoleophilic nanoparticles (fluorine-coated silica nanoparticles, F-SiO2 NPs) in a solvent, followed by solvent evaporation and ECA polymerization. Polymerized ECA (poly-ECA) in the coating material strongly adheres the F-SiO2 NPs to the substrate surface, while PCL bestows the rigid poly-ECA with high flexibility. A coated polyurethane sponge exhibits superhydrophobicity (water contact angle of >150°), while retaining robust mechanical stability and flexibility/elasticity. This provides an efficient means of cleaning oil spills with high selectivity, even after mechanical abrasion (>99% separation efficiency is retained after 120 tape test cycles and 50 rubbing test cycles), with excellent reusability.

6.
Adv Mater ; 33(1): e2005454, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169480

RESUMO

Metasurfaces present a potent platform to manipulate light by the spatial arrangement of sub-wavelength patterns with well-defined sizes and geometries, in thin films. Metasurfaces by definition are planar. However, it would be highly desirable to integrate metasurfaces with diverse, spatially programmed sub-wavelength features into a 3D monolith, to manipulate light within a compact 3D space. Here, a 3D photoengraving strategy is presented; that is, generation of such composite metasurfaces from a single microstructure via the irradiation of multiple interference laser beams onto different facets of the parent azopolymeric microstructure. Through "photofluidization," this technique enables independent inscription and erasing of metasurfaces onto and from individual facets of 3D monoliths with arbitrary shapes and dimensions, in a high-throughput fashion (over approximately a few cm2 at a time). By engraving discrete sub-wavelength 1D surface relief gratings of different pitches on different facets of an inverse pyramidal array, a multiplexing structure-color filter is demonstrated.

7.
RSC Adv ; 11(38): 23631-23636, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479804

RESUMO

In nature, wetting by water droplets on superhydrophobic materials is governed by the Cassie-Baxter or Wenzel models. Moreover, sticky properties, derived from these types of wettings, are required for a wide range of applications involving superhydrophobic materials. As a facile new strategy, a method employing a gaseous fluorine precursor to fabricate core-shell particles, comprising perfectly shaped fluorine shells with adjustable adhesive strength, is described in this paper. Silica was used as the hydrophilic core, while polyvinylidene fluoride (PVDF) was used for the hydrophobic shell coating, forming a raspberry-like shape. In addition, controlling the amount of PVDF coated on the silica surface enabled the water droplets to come into contact with both the PVDF of the shell and the silica of the core, thereby controlling both the superhydrophobicity and the adhesive strength. Thus, the synthesized particles formed a structured coating with controllable stickiness and contact angles of 131-165°. Furthermore, on surfaces with high adhesivity, the water droplets remained stable at tilt angles of 90° and 180° even under a strong centrifugal force, whereas on surfaces with low adhesivity, the water droplets slid off when the substrate was tilted at 4°.

8.
RSC Adv ; 10(34): 20197-20201, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520447

RESUMO

Micro/nano-patterned alumina surfaces are important in a variety fields such as chemical/biotechnology, surface science, and microelectro-mechanical systems. However, for patterning alumina surfaces, it still remains a challenge to have a lithographic tool that has large flexibility in design layouts, structural reconfigurability, and a simple fabrication process. In this work, a new alumina-patterning platform that uses a photo-reconfigurable azobenzene-alumina composite as an imprinting material is presented. Under far-field irradiation, the azobenzene-alumina anisotropically flows in the direction parallel to the light polarization. Accordingly, an arbitrarily designed azobenzene-alumina composite by imprinting can be deterministically reconfigured by light polarization and irradiation time. The photo-reconfigured azobenzene-alumina is then converted to pure alumina through calcination in an air atmosphere, which provides thin crack-free alumina patterns with a high structural fidelity. The novel combination of photo-reconfigurable azobenzene moieties and an alumina precursor for imprinting the material provides large flexibility in designing and controlling geometric parameters of the alumina pattern, which potentially offers significant value in various micro/nanotechnology fields.

9.
ACS Appl Mater Interfaces ; 12(4): 5058-5064, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31809014

RESUMO

Anisotropic small structures found throughout living nature have unique functionalities as seen by Gecko lizards. Here, we present a simple yet programmable method for fabricating anisotropic, submicrometer-sized bent pillar structures using photoreconfiguration of an azopolymer. A slant irradiation of a p-polarized light on the pillar structure of an azopolymer simply results in a bent pillar structure. By combining the field-gradient effect and directionality of photofluidization, control of the bending shape and the curvature is achieved. With the bent pillar patterned surface, anisotropic wetting and directional adhesion are demonstrated. Moreover, the bent pillar structures can be transferred to other polymers, highlighting the practical importance of this method. We believe that this pragmatic method to fabricate bent pillars can be used in a reliable manner for many applications requiring the systematic variation of a bent pillar structure.

10.
Sci Rep ; 10(1): 15121, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934316

RESUMO

Anti-reflection and anti-contamination coatings prepared from fluorinated polymers have widespread and important applications, ranging from protective films for corrosion resistance to high-tech microelectronics and medical devices due to their transparency, low refractive index, stain resistance, and antifouling properties. However, the application of existing coatings is hindered by low surface adhesion to the target substrate and weakness when exposed to mechanical stress or damage, resulting in significant limitations to their practical applications. Herein, we incorporate perfluoropolyether (PFPE) with benzophenone (BP) to develop an efficient coating material (PFPE-BP) possessing broadband anti-reflectivity, anti-contamination properties, excellent abrasion resistance, and stability under elevated temperatures and relative humidity. The presence of BP allows the coating materials to be homogeneously mixed with a commercial hard coating solution to uniformly coat the target substrate. Furthermore, UV light irradiation on the coating surface results in excellent adhesion between BP groups of PFPE-BP and the hard coating matrix.

11.
RSC Adv ; 9(69): 40286-40291, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-35542653

RESUMO

The crystallinities of Ag-doped poly(vinylidene fluoride) (PVDF) films were modified by removing Ag+ using a novel washing process, which allowed control of the ratio of γ- and ß-phases. The polarity of the composite film without Ag+ removal through the washing process reached 98%, and the ß-phase content in the total electroactive phase was increased to 61%, according to Fourier-transform infrared spectroscopy. When Ag+ were removed through a process involving several cycles of washing, filtering, drying, and re-dissolving, the highest ratio of the γ-phase was increased to 67%, 28% higher than that before washing. This showed that Ag+ induced ß-phase formation while Ag nanoparticles induced γ-phase formation, and that the ratio of γ- and ß-phases in PVDF composite films can be controlled to suit specific applications by this washing process.

12.
ACS Appl Mater Interfaces ; 9(17): 15114-15121, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28374579

RESUMO

Silver nanowires (AgNWs) are one of the most promising materials to replace commercially available indium tin oxide in flexible transparent conductive films (TCFs); however, there are still numerous problems originating from poor AgNW junction formation and improper AgNW embedment into transparent substrates. To mitigate these problems, high-temperature processes have been adopted; however, unwanted substrate deformation prevents the use of these processes for the formation of flexible TCFs. In this work, we present a novel poly(methyl methacrylate) interlayer plasticized by dibutyl phthalate for low-temperature fabrication of AgNW-based TCFs, which does not cause any substrate deformation. By exploiting the viscoelastic properties of the plasticized interlayer near the lowered glass-transition temperature, a monolithic junction of AgNWs on the interlayer and embedment of the interconnected AgNWs into the interlayer are achieved in a single-step pressing. The resulting AgNW-TCFs are highly transparent (∼92% at a wavelength of 550 nm), highly conductive (<90 Ω/sq), and environmentally and mechanically robust. Therefore, the plasticized interlayer provides a simple and effective route to fabricate high-quality AgNW-based TCFs.

13.
ACS Nano ; 11(2): 1320-1327, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28080024

RESUMO

Anisotropic movement of azobenzene materials (i.e., azobenzene molecules incorporated in polymer, glass, or supramolecules) has provided significant opportunities for the fabrication of micro/nanoarchitectures. The examples include circular holes, line gaps, ellipsoidal holes, and nanofunnels. However, all of the previous studies have only focused on the lateral directional movement for the structural shaping of azobenzene materials. Herein, we propose structural shaping based on a vertical directional movement of azobenzene materials. To do this, light with oblique incidence, containing normal direction light polarization, was illuminated onto azobenzene materials film contact with patterned elastomeric molds (i.e., PDMS) so that the resulting vertical directional movement of azobenzene materials fills in the cavities of the molds and results in pattern formation. As a result, a range of patterns with sizes of features from micro- to sub-100 nm scale was successfully fabricated in a large area (few cm2), and the structural height was deterministically controlled by simply adjusting irradiation time. In addition to the notable capability of fabricating the single-scale structures, the technique provides a facile way to fabricate complex hierarchical multiscale structures, ensuring its versatility and wide applicability to various applications. As a selected exemplary application of the multiscale structures, a superhydrophobic surface has been successfully demonstrated.

14.
Nat Commun ; 8(1): 721, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959006

RESUMO

Designing topographic clusters is of significant interest, yet it remains challenging as they often lack mobility or deformability. Here we exploit the huge volumetric expansion (up to 3000%) of a new type of building block, thermally expandable microbombs. They consist of a viscoelastic polymeric shell and a volatile gas core, which, within structural confinement, create micro-clusters via inverse jamming and topographical close-packing. Upon heating, microbombs anchored in rigid confinement underwent balloon-like blowing up, allowing for dense clusters via soft interplay between viscoelastic shells. Importantly, the confinement is unyielding against the internal pressure of the microbombs, thereby enabling self-assembled clusters, which can be coupled with topographic inscription to introduce structural hierarchy on the clusters. Our strategy provides densely packed yet ultralight clusters with a variety of complex shapes, cleavages, curvatures, and hierarchy. In turn, these clusters will enrich our ability to explore the assemblies of the ever-increasing range of microparticle systems.Self-assembled systems are normally composed of incompressible building blocks, which constrain their space filling efficiency. Yu et al. show programmable, densely packed clusters using thermally expandable soft microparticles, whereby the self-assembling process is realized via a jamming transition.

15.
ACS Appl Mater Interfaces ; 8(45): 30671-30676, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27808491

RESUMO

Free-standing, self-aligned, high-aspect-ratio (length to cross-section, up to 15.5) waveguides that mimic insects' ommatidia are fabricated. Self-aligned waveguides under the lenses are created after exposing photoresist SU-8 film through the negative polydimethylsiloxane (PDMS) lens array. Instead of drying from the developer, the waveguides are coated with poly(vinyl alcohol) and then immersed into a mixture of PDMS precursor and diethyl ether. The slow drying of diethyl ether, followed by curing and peeling off PDMS, allows for the fabrication of free-standing waveguides without collapse. We show that the synthetic ommatidia can confine light and propagate it all the way to the tips.


Assuntos
Lentes
16.
ACS Nano ; 9(10): 9837-48, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26389813

RESUMO

Manipulating the size and shape of silica precursor patterns using simple far-field light irradiation and transforming such reconfigured structures into inorganic silica patterns by pyrolytic conversion are demonstrated. The key concept of our work is the use of an azobenzene incorporated silica precursor (herein, we refer to this material as azo-silane composite) as ink in a micromolding process. The moving direction of azo-silane composite is parallel to light polarization direction; in addition, the amount of azo-silane composite movement can be precisely determined by controlling light irradiation time. By exploiting this peculiar phenomenon, azo-silane composite patterns produced using the micromolding technique are arbitrarily manipulated to obtain various structural features including high-resolution size or sophisticated shape. The photoreconfigured patterns formed with azo-silane composites are then converted into pure silica patterns through pyrolytic conversion. The pyrolytic converted silica patterns are uniformly formed over a large area, ensuring crack-free formation and providing high structural fidelity. Therefore, this optical manipulation technique, in conjunction with the pyrolytic conversion process, opens a promising route to the design of silica patterns with finely tuned structural features in terms of size and shape. This platform for designing silica structures has significant value in various nanotechnology fields including micro/nanofluidic channel for lab-on-a-chip devices, transparent superhydrophobic surfaces, and optoelectronic devices.


Assuntos
Compostos Azo/química , Nanoestruturas/química , Silanos/química , Dióxido de Silício/química , Bioimpressão , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Luz , Nanoestruturas/ultraestrutura , Nanotecnologia , Propriedades de Superfície
17.
ACS Appl Mater Interfaces ; 7(15): 8209-17, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25816857

RESUMO

The fabrication of micro- and nanostructures is one of the cornerstones of current materials science and technology. There is a strong interest in processing methods capable of manufacturing engineered complex structures on a large area. A method that is gaining a growing attention in this context is based on surface reshaping of photosensitive materials, such as certain azobenzene derivatives by way of a process of light-induced mass migration, also described as "athermal photofluidization". Here, we apply this method to prestructured substrate, converting simple periodic structures initially patterned only in two dimensions into complex-shaped three-dimensional (3D) structures by a single processing step over a large area. The optical variables of the irradiating beam are used to gain unprecedented deterministic control on the resulting 3D architectures. We also provide some initial demonstrations of the potential application of this novel shaping method, including unidirectional wetting surfaces and micro- and nanoscaled fluidic channel manufactured with it.

18.
Adv Mater ; 27(19): 2974-80, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25821122

RESUMO

A physical interlocking interface that can tightly bind a sulfonated poly(arylene ether sulfone) (SPAES) membrane and a Nafion catalyst layer in polymer electrolyte fuel cells is demonstrated. Owing to higher expansion with hydration for SPAES than for Nafion, a strong normal force is generated at the interface of a SPAES pillar and a Nafion hole, resulting in an 8-fold increase of the interfacial bonding strength at RH 50% and a 4.7-times increase of the wet/dry cycling durability.

19.
Adv Mater ; 26(44): 7521-8, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25250689

RESUMO

The field-gradient, superficial photo fluidization of azomaterials allows a specific 3D nano-silhouette to be shaped over a large area, so as to get easy access to a 3D-tapered, deep sub-wavelength Au nanohole (20 nm spatial size) array. The squeezing of visible light into the deep sub-wavelength point and the relevant extraordinary optical transmission (EOT) are achieved using this 3D-tapered, 20 nm Au nanohole.

20.
Adv Mater ; 25(38): 5490-7, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23857634

RESUMO

The Field-Gradient Effect extends the photofluidization of azobenzene materials to 3D, multi-level micro/nanotexturing with a newly conceptualized design strategy based on "field-gradient photofluidization". In particular, we successfully characterized the vertical gradient optical absorption within the azobenzene material and the resulting field-gradient photofluidization both theoretically and experimentally. Furthermore, we could create the heterogeneously integrated micro/nanotextures at any desired surface heights, capability that is potentially beneficial for plasmonic applications.


Assuntos
Luz , Microtecnologia/métodos , Movimento (Física) , Nanotecnologia/métodos , Compostos Azo , Microtecnologia/instrumentação , Nanotecnologia/instrumentação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA