Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37765933

RESUMO

With the development of multimedia systems in wireless environments, the rising need for artificial intelligence is to design a system that can properly communicate with humans with a comprehensive understanding of various types of information in a human-like manner. Therefore, this paper addresses an audio-visual scene-aware dialog system that can communicate with users about audio-visual scenes. It is essential to understand not only visual and textual information but also audio information in a comprehensive way. Despite the substantial progress in multimodal representation learning with language and visual modalities, there are still two caveats: ineffective use of auditory information and the lack of interpretability of the deep learning systems' reasoning. To address these issues, we propose a novel audio-visual scene-aware dialog system that utilizes a set of explicit information from each modality as a form of natural language, which can be fused into a language model in a natural way. It leverages a transformer-based decoder to generate a coherent and correct response based on multimodal knowledge in a multitask learning setting. In addition, we also address the way of interpreting the model with a response-driven temporal moment localization method to verify how the system generates the response. The system itself provides the user with the evidence referred to in the system response process as a form of the timestamp of the scene. We show the superiority of the proposed model in all quantitative and qualitative measurements compared to the baseline. In particular, the proposed model achieved robust performance even in environments using all three modalities, including audio. We also conducted extensive experiments to investigate the proposed model. In addition, we obtained state-of-the-art performance in the system response reasoning task.

2.
Sensors (Basel) ; 22(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35271172

RESUMO

The performance of natural language processing with a transfer learning methodology has improved by applying pre-training language models to downstream tasks with a large number of general data. However, because the data used in pre-training are irrelevant to the downstream tasks, a problem occurs in that it learns general features rather than those features specific to the downstream tasks. In this paper, a novel learning method is proposed for embedding pre-trained models to learn specific features of such tasks. The proposed method learns the label features of downstream tasks through contrast learning using label embedding and sampled data pairs. To demonstrate the performance of the proposed method, we conducted experiments on sentence classification datasets and evaluated whether the features of the downstream tasks have been learned through a PCA and a clustering of the embeddings.


Assuntos
Aprendizagem , Processamento de Linguagem Natural , Análise por Conglomerados , Idioma , Aprendizado de Máquina
3.
Nanotechnology ; 32(19): 195206, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33620035

RESUMO

Vertically aligned two-dimensional (2D) molybdenum disulfide nanoflowers (MoS2 NFs) have drawn considerable attention as a novel functional material with potential for next-generation applications owing to their inherently distinctive structure and extraordinary properties. We report a simple metal organic chemical vapor deposition (MOCVD) method that can grow high crystal quality, large-scale and highly homogeneous MoS2 NFs through precisely controlling the partial pressure ratio of H2S reaction gas, P SR, to Mo(CO)6 precursor, P MoP, at a substrate temperature of 250 °C. We investigate microscopically and spectroscopically that the S/Mo ratio, optical properties and orientation of the grown MoS2 NFs can be controlled by adjusting the partial pressure ratio, P SR/P MoP. It is also shown that the low temperature MOCVD (LT-MOCVD) growth method can regulate the petal size of MoS2 NFs through the growth time, thereby controlling photoluminescence intensity. More importantly, the MoS2 NFs/GaAs heterojunction flexible solar cell exhibiting a power conversion efficiency of ∼1.3% under air mass 1.5 G illumination demonstrates the utility of the LT-MOCVD method that enables the direct growth of MoS2 NFs on the flexible devices. Our work can pave the way for practical, easy-to-fabricate 2D materials integrated flexible devices in optical and photonic applications.

4.
Foot Ankle Surg ; 25(2): 231-236, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29409189

RESUMO

BACKGROUND: Despite a consensus regarding the correlation of peroneal strength deficit with chronic ankle instability (CAI), there are conflicting reports in regards to peroneal strength as assessed by isokinetic dynamometer in patients with CAI. The purpose of this study was to evaluate the changes of isokinetic strength in patients with CAI compared to ankle sprain copers and normal individuals. METHODS: Forty-two patients (CAI group) with chronic ankle instability who were scheduled for the modified Broström procedure met inclusion criteria. Thirty-one ankle sprain copers (ASC group) who were eligible at 6 months after acute injury and 30 controls were recruited. The muscle strength associated with four motions of the ankle were evaluated using isokinetic dynamometer. RESULTS: Peak torque for inversion and eversion at 60°/s angular velocity were significantly lower in the CAI group compared to the ASC and control group (P=.004, P<.001, respectively). Deficit ratio of peak torque for eversion at 60°/s and 120°/s in the CAI group were 33.8% and 19.8%, respectively, which indicated significant side to side differences (both P<.001). The evertor/invertor strength ratio (0.59) for eversion at 60°/s was significantly lower in the CAI group (P<.001). CONCLUSION: As compared to the ankle sprain copers and normal individuals, patients with chronic ankle instability who were scheduled for modified Broström procedure demonstrated a significant weakness of isokinetic peroneal strength. Isokinetic muscular assessment can provide the useful preoperative informations regarding functional ankle instability focusing on peroneal weakness.


Assuntos
Traumatismos do Tornozelo/complicações , Instabilidade Articular/fisiopatologia , Força Muscular/fisiologia , Entorses e Distensões/complicações , Adulto , Traumatismos do Tornozelo/diagnóstico , Traumatismos do Tornozelo/fisiopatologia , Articulação do Tornozelo/fisiopatologia , Doença Crônica , Feminino , Humanos , Instabilidade Articular/diagnóstico , Instabilidade Articular/etiologia , Masculino , Dinamômetro de Força Muscular , Valores de Referência , Entorses e Distensões/diagnóstico , Entorses e Distensões/fisiopatologia , Adulto Jovem
5.
Plant Cell Rep ; 37(4): 653-664, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29350244

RESUMO

KEY MESSAGE: Using quantitative assays for autophagy, we analyzed 4 classes of atg mutants, discovered new atg2 phenotypes and ATG gene interactions, and proposed a model of autophagosome formation in plants. Plant and other eukaryotic cells use autophagy to target cytoplasmic constituents for degradation in the vacuole. Autophagy is regulated and executed by a conserved set of proteins called autophagy-related (ATG). In Arabidopsis, several groups of ATG proteins have been characterized using genetic approaches. However, the genetic interactions between ATG genes have not been established and the relationship between different ATG groups in plants remains unclear. Here we analyzed atg2, atg7, atg9, and atg11 mutants and their double mutants at the physiological, biochemical, and subcellular levels. Involvement of phosphatidylinositol 3-kinase (PI3K) in autophagy was also tested using wortmannin, a PI3K inhibitor. Our mutant analysis using autophagy markers showed that atg7 and atg2 phenotypes are more severe than those of atg11 and atg9. Unlike other mutants, atg2 cells accumulated several autophagic vesicles that could not be delivered to the vacuole. Analysis of atg double mutants, combined with wortmannin treatment, indicated that ATG11, PI3K, and ATG9 act upstream of ATG2. Our data support a model in which plant ATG1 and PI3K complexes play a role in the initiation of autophagy, whereas ATG2 is involved in a later step during the biogenesis of autophagic vesicles.


Assuntos
Aminopeptidases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aminopeptidases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas de Membrana/genética , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Mapas de Interação de Proteínas , Vacúolos/genética , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/genética
6.
Sensors (Basel) ; 18(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772668

RESUMO

In recent times, with the increasing interest in conversational agents for smart homes, task-oriented dialog systems are being actively researched. However, most of these studies are focused on the individual modules of such a system, and there is an evident lack of research on a dialog framework that can integrate and manage the entire dialog system. Therefore, in this study, we propose a framework that enables the user to effectively develop an intelligent dialog system. The proposed framework ontologically expresses the knowledge required for the task-oriented dialog system's process and can build a dialog system by editing the dialog knowledge. In addition, the framework provides a module router that can indirectly run externally developed modules. Further, it enables a more intelligent conversation by providing a hierarchical argument structure (HAS) to manage the various argument representations included in natural language sentences. To verify the practicality of the framework, an experiment was conducted in which developers without any previous experience in developing a dialog system developed task-oriented dialog systems using the proposed framework. The experimental results show that even beginner dialog system developers can develop a high-level task-oriented dialog system.

7.
Nano Lett ; 17(3): 1756-1761, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28166399

RESUMO

Molybdenum disulfide (MoS2), a well-known solid lubricant for low friction surface coatings, has recently drawn attention as an analogue two-dimensional (2D) material beyond graphene. When patterned to produce vertically grown, nanoflower-structures, MoS2 shows promise as a functional material for hydrogen evolution catalysis systems, electrodes for alkali metal-ion batteries, and field-emission arrays. Whereas the wettability of graphene has been substantially investigated, that of MoS2 structures, especially nanoflowers, has remained relatively unexplored despite MoS2 nanoflower's potential in future applications. Here, we demonstrate that the wettability of MoS2 can be controlled by multiscale modulation of surface roughness through (1) tuning of the nanoflower structures by chemical vapor deposition synthesis and (2) tuning of microscale topography via mechanical strain. This multiscale modulation offers broadened tunability (80-155°) compared to single-scale tuning (90-130°). In addition, surface adhesion, determined from contact angle hysteresis (CAH), can also be tuned by multiscale surface roughness modulation, where the CAH is changed in range of 20-40°. Finally, the wettability of crumpled MoS2 nanoflowers can be dynamically and reversibly controlled through applied strain (∼115-150° with 0-200% strain), and remains robust over 1000 strain cycles. These studies on the tunable wettability of MoS2 will contribute to future MoS2-based applications, such as tunable wettability coatings for desalination and hydrogen evolution.

8.
Nanotechnology ; 28(50): 505601, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29087360

RESUMO

Two-dimensional (2D) copper chalcogenides (Cu2-x X where X = S, Se, Te) have had much attention regarding various applications due to their remarkable optical and electrical properties, abundance, and environmentally friendly natures. This work indicates that highly uniform Cu2-x S (where 0 < x < 1) nanosheets can be obtained by the two-step method of Cu deposition by sputtering with precisely controlled and extremely low growth rate followed by vapor-phase sulfurization. The phase transformations of thin Cu2-x S films upon the Cu seed layer thickness are investigated. A unique thickness-constrained synthesis process using vapor-phase sulfurization is employed here, which evolves from a vertical to lateral growth mechanism based on the optimization of the Cu seed layer thickness. Atomically thin 2D ß-Cu2S film was successfully synthesized using the thinnest Cu seed film. We have systematically investigated the phase- and thickness-dependent optical properties of Cu2-x S films at room temperature. Micro-photoluminescence (PL) spectroscopy reveals that the 2D ß-Cu2S film possesses a direct band gap with an energy of 1.1 eV while the PL intensities are greatly suppressed in the multilayer Cu2-x S (where 0 ≤ x < 1).

9.
Nanotechnology ; 28(18): 18LT01, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346218

RESUMO

Semiconducting two-dimensional (2D) materials, particularly extremely thin molybdenum disulfide (MoS2) films, are attracting considerable attention from academia and industry owing to their distinctive optical and electrical properties. Here, we present the direct growth of a MoS2 monolayer with unprecedented spatial and structural uniformity across an entire 8 inch SiO2/Si wafer. The influences of growth pressure, ambient gases (Ar, H2), and S/Mo molar flow ratio on the MoS2 layered growth were explored by considering the domain size, nucleation sites, morphology, and impurity incorporation. Monolayer MoS2-based field effect transistors achieve an electron mobility of 0.47 cm2 V-1 s-1 and on/off current ratio of 5.4 × 104. This work demonstrates the potential for reliable wafer-scale production of 2D MoS2 for practical applications in next-generation electronic and optical devices.

10.
Nano Lett ; 16(8): 4975-81, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27416362

RESUMO

Interlayer tunnel field-effect transistors based on graphene and hexagonal boron nitride (hBN) have recently attracted much interest for their potential as beyond-CMOS devices. Using a recently developed method for fabricating rotationally aligned two-dimensional heterostructures, we show experimental results for devices with varying thicknesses and stacking order of the graphene electrode layers and also model the current-voltage behavior. We show that an increase in the graphene layer thickness results in narrower resonance. However, due to a simultaneous increase in the number of sub-bands and decrease of sub-band separation with an increase in thickness, the negative differential resistance peaks becomes less prominent and do not appear for certain conditions at room temperature. Also, we show that due to the unique band structure of odd number of layer Bernal-stacked graphene, the number of closely spaced resonance conditions increase, causing interference between neighboring resonance peaks. Although this can be avoided with even number of layer graphene, we find that in this case the bandgap opening present at high biases tend to broaden the resonance peaks.

11.
Nano Lett ; 16(3): 1989-95, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26859527

RESUMO

We describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking. Scanning tunneling microscopy reveals no moiré pattern on the artificial bilayer graphene, and tunneling spectroscopy as a function of gate voltage reveals a constant density of states, also in agreement with Bernal stacking. In addition, electron transport probed in dual-gated samples reveals a band gap opening as a function of transverse electric field. To illustrate the applicability of this technique to realize vdW heterostructuctures in which the functionality is critically dependent on rotational alignment, we demonstrate resonant tunneling double bilayer graphene heterostructures separated by hexagonal boron-nitride dielectric.

12.
Nano Lett ; 15(7): 4329-36, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26091062

RESUMO

To reduce Schottky-barrier-induced contact and access resistance, and the impact of charged impurity and phonon scattering on mobility in devices based on 2D transition metal dichalcogenides (TMDs), considerable effort has been put into exploring various doping techniques and dielectric engineering using high-κ oxides, respectively. The goal of this work is to demonstrate a high-κ dielectric that serves as an effective n-type charge transfer dopant on monolayer (ML) molybdenum disulfide (MoS2). Utilizing amorphous titanium suboxide (ATO) as the "high-κ dopant", we achieved a contact resistance of ∼180 Ω·µm that is the lowest reported value for ML MoS2. An ON current as high as 240 µA/µm and field effect mobility as high as 83 cm(2)/V-s were realized using this doping technique. Moreover, intrinsic mobility as high as 102 cm(2)/V-s at 300 K and 501 cm(2)/V-s at 77 K were achieved after ATO encapsulation that are among the highest mobility values reported on ML MoS2. We also analyzed the doping effect of ATO films on ML MoS2, a phenomenon that is absent when stoichiometric TiO2 is used, using ab initio density functional theory (DFT) calculations that shows excellent agreement with our experimental findings. On the basis of the interfacial-oxygen-vacancy mediated doping as seen in the case of high-κ ATO-ML MoS2, we propose a mechanism for the mobility enhancement effect observed in TMD-based devices after encapsulation in a high-κ dielectric environment.

13.
Nano Lett ; 15(1): 428-33, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25436861

RESUMO

We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.

14.
Opt Express ; 22(24): 30161-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606946

RESUMO

We present experiments and analysis on enhanced transmission due to dielectric layer deposited on a metal film perforated with two-dimensional periodic array of subwavelength holes. The Si3N4 overlayer is applied on the perforated gold film (PGF) fabricated on GaAs substrate in order to boost the transmission of light at the surface plasmon polariton (SPP) resonance wavelengths in the mid- and long-wave IR regions, which is used as the antireflection (AR) coating layer between two dissimilar media (air and PGF/GaAs). It is experimentally shown that the transmission through the perforated gold film with 1.8 µm (2.0 µm) pitch at the first-order (second-order) SPP resonance wavelengths can be increased up to 83% (110%) by using a 750 nm (550 nm) thick Si3N4 layer. The SPP resonance leads to a dispersive resonant effective permeability (µeff ≠ 1) and thereby the refractive index matching condition for the conventional AR coating on the surface of a dielectric material cannot be applied to the resonant PGF structure. We develop and demonstrate the concept of AR condition based on the effective parameters of PGF. In addition, the maximum transmission (zero reflection) condition is analyzed numerically by using a three-layer model and a transfer matrix method is employed to determine the total reflection and transmission. The numerically calculated total reflection agrees very well with the reflection obtained by 3D full electromagnetic simulations of the entire structure. Destructive interference conditions for amplitude and phase to get zero reflection are well satisfied.


Assuntos
Luz , Ressonância de Plasmônio de Superfície , Impedância Elétrica , Ouro/química , Modelos Teóricos , Análise Numérica Assistida por Computador , Compostos de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Sci Rep ; 14(1): 6922, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519613

RESUMO

Von Neumann architecture-based computing, while widely successful in personal computers and embedded systems, faces inherent challenges including the von Neumann bottleneck, particularly amidst the ongoing surge of data-intensive tasks. Neuromorphic computing, designed to integrate arithmetic, logic, and memory operations, has emerged as a promising solution for improving energy efficiency and performance. This approach requires the construction of an artificial synaptic device that can simultaneously perform signal processing, learning, and memory operations. We present a photo-synaptic device with 32 analog multi-states by exploiting field-effect transistors based on the lateral heterostructures of two-dimensional (2D) WS2 and MoS2 monolayers, formed through a two-step metal-organic chemical vapor deposition process. These lateral heterostructures offer high photoresponsivity and enhanced efficiency of charge trapping at the interface between the heterostructures and SiO2 due to the presence of the WS2 monolayer with large trap densities. As a result, it enables the photo-synaptic transistor to implement synaptic behaviors of long-term plasticity and high recognition accuracy. To confirm the feasibility of the photo-synapse, we investigated its synaptic characteristics under optical and electrical stimuli, including the retention of excitatory post-synaptic currents, potentiation, habituation, nonlinearity factor, and paired-pulse facilitation. Our findings suggest the potential of versatile 2D material-synapse with a high density of device integration.

16.
ACS Nano ; 18(1): 1041-1053, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117976

RESUMO

Hardware security is not a new problem but is ever-growing in consumer and medical domains owing to hyperconnectivity. A physical unclonable function (PUF) offers a promising hardware security solution for cryptographic key generation, identification, and authentication. However, electrical PUFs using nanomaterials or two-dimensional (2D) transition metal dichalcogenides (TMDCs) often have limited entropy and parameter space sources, both of which increase the vulnerability to attacks and act as bottlenecks for practical applications. We report an electrical PUF with enhanced entropy as well as parameter space by incorporating 2D TMDC heteronanostructures into field-effect transistors (FETs). Lateral heteronanostructures of 2D molybdenum disulfide and tungsten disulfide serve as a potent entropy source. The variable feature of FETs is further leveraged to enhance the parameter space that provides multiple challenge-response pairs, which are essential for PUFs. This combination results in stably repeatable yet highly variable FET characteristics as alternative electrical PUFs. Comprehensive PUF performance analyses validate the bit uniformity, reproducibility, uniqueness, randomness, false rates, and encoding capacity. The 2D material heteronanostructure-driven electrical PUFs with strong FET-to-FET variability can potentially be augmented as an immediately deployable and scalable security solution for various hardware devices.

17.
Sci Rep ; 14(1): 2050, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267462

RESUMO

Linear gratings polarizers provide remarkable potential to customize the polarization properties and tailor device functionality via dimensional tuning of configurations. Here, we extensively investigate the polarization properties of single- and double-layer linear grating, mainly focusing on self-aligned bilayer linear grating (SABLG), serving as a wire grid polarizer in the mid-wavelength infrared (MWIR) region. Computational analyses revealed the polarization properties of SABLG, highlighting enhancement in TM transmission and reduction in TE transmission compared to single-layer linear gratings (SLG) due to optical cavity effects. As a result, the extinction ratio is enhanced by approximately 2724-fold in wavelength 3-6 µm. Furthermore, integrating the specially designed SABLG with an MWIR InAs/GaSb Type-II Superlattice (T2SL) photodetector yields a significantly enhanced spectral responsivity. The TM-spectral responsivity of SABLG is enhanced by around twofold than the bare device. The simulation methodology and analytical analysis presented herein provide a versatile route for designing optimized polarimetric structures integrated into infrared imaging devices, offering superior capabilities to resolve linear polarization signatures.

18.
ACS Omega ; 9(9): 10852-10859, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463256

RESUMO

Functional flavonoid production is a new agenda in the agricultural industry, and young barley leaves (YBL) are one of the highlighted crops due to their health-beneficial flavonoid, saponarin. For the year-round cultivation of a high saponarin content of YBL, abiotic signal effects on the biosynthesis and metabolism in YBL need to be understood clearly. In this research, the effects of reactive oxygen species (ROS)-related abiotic signals, such as light, potassium, and sodium, were investigated on the biosynthetic metabolism in YBL cultivation under artificial lights. A higher quantity of blue-rich white light (6500 K of light temperature) irradiation enhanced ROS levels and the related enzyme activities (APX and CAT), as well as photosynthesis and saponarin amount, while red-rich white light (3000 K of light temperature) increased the photosynthesis only. In addition, 1.0 g L-1 K+ treatment in water slightly reduced ROS levels and increased saponarin accumulation in YBL. These blue-rich light and K+ supplemental conditions relatively increased OGT expression and reduced 4-coumaric acid and isovitexin as saponarin precursors. Furthermore, the relative ratio of lutonarin as an oxidized product of saponarin increased in increments of light quantity. Finally, the abiotic conditions for saponarin production were optimized with the mixture solution treatment of 1.0 g L-1 Na+ and 1.0 g L-1 K+ under 500 PPFD of 6500 K light, and the saponarin amount per leaf was 219.5 µg plant-1; it was comparable amount with that under sunlight condition.

19.
Opt Express ; 21(4): 4709-16, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23482003

RESUMO

This paper is focused on analyzing the impact of a two-dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2D-Au-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show that the performance of the DWELL focal plane array (FPA) is improved by enhancing the coupling to active layer via local field engineering resulting from a surface plasmon polariton mode and a guided Fabry-Perot mode. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors. Experimental results demonstrate the enhanced signal-to-noise ratio by the 2D-Au-CHA integrated FPA as compared to the DWELL FPA. A comparison between the experiment and the simulation shows a good agreement.


Assuntos
Desenho Assistido por Computador , Ouro/química , Iluminação/instrumentação , Nanopartículas Metálicas/química , Fotometria/instrumentação , Pontos Quânticos , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos
20.
Nanomaterials (Basel) ; 13(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770534

RESUMO

Gas sensors applied in real-time detection of toxic gas leakage, air pollution, and respiration patterns require a reliable test platform to evaluate their characteristics, such as sensitivity and detection limits. However, securing reliable characteristics of a gas sensor is difficult, owing to the structural difference between the gas sensor measurement platform and the difference in measurement methods. This study investigates the effect of measurement conditions and system configurations on the sensitivity of two-dimensional (2D) material-based gas sensors. Herein, we developed a testbed to evaluate the response characteristics of MoS2-based gas sensors under a NO2 gas flow, which allows variations in their system configurations. Additionally, we demonstrated that the distance between the gas inlet and the sensor and gas inlet orientation influences the sensor performance. As the distance to the 2D gas sensor surface decreased from 4 to 2 mm, the sensitivity of the sensor improved to 9.20%. Furthermore, when the gas inlet orientation was perpendicular to the gas sensor surface, the sensitivity of the sensor was the maximum (4.29%). To attain the optimum operating conditions of the MoS2-based gas sensor, the effects of measurement conditions, such as gas concentration and temperature, on the sensitivity of the gas sensor were investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA