Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 135(4): 592-4, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19013268

RESUMO

In most cases, the functions of long noncoding RNAs remain uncertain. Working in the model plant Arabidopsis, Wierzbicki et al. (2008) provide evidence that transcription of intergenic noncoding regions by RNA polymerase V promotes heterochromatin formation and silencing of nearby genes.


Assuntos
Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Arabidopsis/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Heterocromatina/metabolismo , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(48): E11321-E11330, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429332

RESUMO

Changes in dosage of part of the genome (aneuploidy) have long been known to produce much more severe phenotypic consequences than changes in the number of whole genomes (ploidy). To examine the basis of these differences, global gene expression in mature leaf tissue for all five trisomies and in diploids, triploids, and tetraploids of Arabidopsis thaliana was studied. The trisomies displayed a greater spread of expression modulation than the ploidy series. In general, expression of genes on the varied chromosome ranged from compensation to dosage effect, whereas genes from the remainder of the genome ranged from no effect to reduced expression approaching the inverse level of chromosomal imbalance (2/3). Genome-wide DNA methylation was examined in each genotype and found to shift most prominently with trisomy 4 but otherwise exhibited little change, indicating that genetic imbalance is generally mechanistically unrelated to DNA methylation. Independent analysis of gene functional classes demonstrated that ribosomal, proteasomal, and gene body methylated genes were less modulated compared with all classes of genes, whereas transcription factors, signal transduction components, and organelle-targeted protein genes were more tightly inversely affected. Comparing transcription factors and their targets in the trisomies and in expression networks revealed considerable discordance, illustrating that altered regulatory stoichiometry is a major contributor to genetic imbalance. Reanalysis of published data on gene expression in disomic yeast and trisomic mouse cells detected similar stoichiometric effects across broad phylogenetic taxa, and indicated that these effects reflect normal gene regulatory processes.


Assuntos
Arabidopsis/genética , Cromossomos de Plantas/genética , Drosophila/genética , Camundongos/genética , Aneuploidia , Animais , Cromossomos/genética , Metilação de DNA , Expressão Gênica , Poliploidia , Trissomia , Leveduras/genética
3.
RNA ; 23(7): 1068-1079, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28373290

RESUMO

To identify regulators of pre-mRNA splicing in plants, we developed a forward genetic screen based on an alternatively spliced GFP reporter gene in Arabidopsis thaliana In wild-type plants, three major splice variants issue from the GFP gene but only one represents a translatable GFP mRNA. Compared to wild-type seedlings, which exhibit an intermediate level of GFP expression, mutants identified in the screen feature either a "GFP-weak" or "Hyper-GFP" phenotype depending on the ratio of the three splice variants. GFP-weak mutants, including previously identified prp8 and rtf2, contain a higher proportion of unspliced transcript or canonically spliced transcript, neither of which is translatable into GFP protein. In contrast, the coilin-deficient hyper-gfp1 (hgf1) mutant displays a higher proportion of translatable GFP mRNA, which arises from enhanced splicing of a U2-type intron with noncanonical AT-AC splice sites. Here we report three new hgf mutants that are defective, respectively, in spliceosome-associated proteins SMU1, SmF, and CWC16, an Yju2/CCDC130-related protein that has not yet been described in plants. The smu1 and cwc16 mutants have substantially increased levels of translatable GFP transcript owing to preferential splicing of the U2-type AT-AC intron, suggesting that SMU1 and CWC16 influence splice site selection in GFP pre-mRNA. Genome-wide analyses of splicing in smu1 and cwc16 mutants revealed a number of introns that were variably spliced from endogenous pre-mRNAs. These results indicate that SMU1 and CWC16, which are predicted to act directly prior to and during the first catalytic step of splicing, respectively, function more generally to modulate splicing patterns in plants.


Assuntos
Arabidopsis/genética , Proteínas Nucleares/metabolismo , RNA de Plantas/genética , Processamento Alternativo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Mutação , Proteínas Nucleares/genética
4.
Nat Genet ; 37(7): 761-5, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15924141

RESUMO

RNA-directed DNA methylation, one of several RNA interference-mediated pathways in the nucleus, has been documented in plants and in human cells. Despite progress in identifying the DNA methyltransferases, histone-modifying enzymes and RNA interference proteins needed for RNA-directed DNA methylation, the mechanism remains incompletely understood. We screened for mutants defective in RNA-directed DNA methylation and silencing of a transgene promoter in Arabidopsis thaliana and identified three drd complementation groups. DRD1 is a SNF2-like protein required for RNA-directed de novo methylation. We report here that DRD2 and DRD3 correspond to the second-largest subunit and largest subunit, respectively, of a fourth class of DNA-dependent RNA polymerase (polymerase IV) that is unique to plants. DRD3 is a functionally diversified homolog of NRPD1a or SDE4, identified in a separate screen for mutants defective in post-transcriptional gene silencing. The identical DNA methylation patterns observed in all three drd mutants suggest that DRD proteins cooperate to create a substrate for RNA-directed de novo methylation.


Assuntos
Arabidopsis/enzimologia , Metilação de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Inativação Gênica , RNA de Plantas/metabolismo , Arabidopsis/genética , RNA Polimerases Dirigidas por DNA/genética , Dados de Sequência Molecular , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA de Plantas/genética
5.
EMBO J ; 28(1): 48-57, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19078964

RESUMO

We used a transgene system to study spreading of RNA-directed DNA methylation (RdDM) during transcriptional gene silencing in Arabidopsis thaliana. Forward and reverse genetics approaches using this system delineated a stepwise pathway for the biogenesis of secondary siRNAs and unidirectional spreading of methylation from an upstream enhancer element into downstream sequences. Trans-acting, hairpin-derived primary siRNAs induce primary RdDM, independently of an enhancer-associated 'nascent' RNA, at the target enhancer region. Primary RdDM is a key step in the pathway because it attracts the secondary siRNA-generating machinery, including RNA polymerase IV, RNA-dependent RNA polymerase2 and Dicer-like3 (DCL3). These factors act in a turnover pathway involving a nascent RNA, which normally accumulates stably in non-silenced plants, to produce cis-acting secondary siRNAs that induce methylation in the downstream region. The identification of DCL3 in a forward genetic screen for silencing-defective mutants demonstrated a strict requirement for 24-nt siRNAs to direct methylation. A similar stepwise process for spreading of DNA methylation may occur in mammalian genomes, which are extensively transcribed in upstream regulatory regions.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/fisiologia , Metilação de DNA , Inativação Gênica , RNA Interferente Pequeno/metabolismo , Proteínas de Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Ligação Proteica , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/metabolismo
6.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37539868

RESUMO

Coilin is a scaffold protein essential for the structure of Cajal bodies, which are nucleolar-associated, nonmembranous organelles that coordinate the assembly of nuclear ribonucleoproteins (RNPs) including spliceosomal snRNPs. To study coilin function in plants, we conducted a genetic suppressor screen using a coilin (coi1) mutant in Arabidopsis thaliana and performed an immunoprecipitation-mass spectrometry analysis on coilin protein. The coi1 mutations modify alternative splicing of a GFP reporter gene, resulting in a hyper-GFP phenotype in young coi1 seedlings relative to the intermediate wild-type level. As shown here, this hyper-GFP phenotype is extinguished in older coi1 seedlings by posttranscriptional gene silencing triggered by siRNAs derived from aberrant splice variants of GFP pre-mRNA. In the coi1 suppressor screen, we identified suppressor mutations in WRAP53, a putative coilin-interacting protein; SMU2, a predicted splicing factor; and ZCH1, an incompletely characterized zinc finger protein. These suppressor mutations return the hyper-GFP fluorescence of young coi1 seedlings to the intermediate wild-type level. Additionally, coi1 zch1 mutants display more extensive GFP silencing and elevated levels of GFP siRNAs, suggesting the involvement of wild-type ZCH1 in siRNA biogenesis or stability. The immunoprecipitation-mass spectrometry analysis reinforced the roles of coilin in pre-mRNA splicing, nucleolar chromatin structure, and rRNA processing. The participation of coilin in these processes, at least some of which incorporate small RNAs, supports the hypothesis that coilin provides a chaperone for small RNA trafficking. Our study demonstrates the usefulness of the GFP splicing reporter for investigating alternative splicing, ribosome biogenesis, and siRNA-mediated silencing in the context of coilin function.


Assuntos
Processamento Alternativo , Arabidopsis , Arabidopsis/genética , RNA Interferente Pequeno/genética , Precursores de RNA , Splicing de RNA
7.
Biochim Biophys Acta ; 1809(8): 444-51, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21605714

RESUMO

Small interfering RNAs (siRNAs) are widespread in various eukaryotes and are involved in maintenance of chromatin modifications, especially those for inert states represented by covalent modifications of cytosine and/or histones. In contrast to mammalian genomes, in which cytosine methylation is restricted mostly to CG dinucleotide sequences, inert chromatin in plants carries cytosine methylation in all sequence contexts, and siRNAs play a major role in directing cytosine methylation through the process of RNA-directed DNA methylation. Recent advances in this field have revealed that siRNA-mediated maintenance of inert chromatin has diverse roles in development as well as in plant responses to the environment. Various proteinaceous factors required for siRNA-mediated chromatin modification have been identified in Arabidopsis thaliana, and much effort has been invested in understanding their function and interaction, resulting in the assignment of many of these factors to specific biochemical activities and engagement with specific steps such as transcription of intergenic RNAs, RNA processing, and cytosine methylation. However, the precise functions of a number of factors remain undesignated, and interactions of distinct pathways for siRNA-mediated chromatin modification are largely unknown. In this review, we summarize the roles of siRNA-mediated chromatin modification in various biological processes of A. thaliana, and present some speculation on the functions and interactions of silencing factors that, while not yet assigned to defined biochemical activities, have been loosely assigned to specific events in siRNA-mediated chromatin modification pathways. Special Issue entitled: Epigenetic control of cellular and developmental processes in plants.


Assuntos
Arabidopsis/genética , RNA de Plantas/genética , RNA Interferente Pequeno/genética , ATPases Associadas a Diversas Atividades Celulares , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/genética , Metilação de DNA/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Heterocromatina/genética , Modelos Genéticos , Mutação , Proteínas Nucleares/genética , Estresse Fisiológico , Fatores de Transcrição/genética
8.
Plant Cell Physiol ; 53(5): 766-84, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22302712

RESUMO

DNA methylation is a type of epigenetic marking that strongly influences chromatin structure and gene expression in plants and mammals. Over the past decade, DNA methylation has been intensively investigated in order to elucidate its control mechanisms. These studies have shown that small RNAs are involved in the induction of DNA methylation, that there is a relationship between DNA methylation and histone methylation, and that the base excision repair pathway has an important role in DNA demethylation. Some aspects of DNA methylation have also been shown to be shared with mammals, suggesting that the regulatory pathways are, in part at least, evolutionarily conserved. Considerable progress has been made in elucidating the mechanisms that control DNA methylation; however, many aspects of the mechanisms that read the information encoded by DNA methylation and mediate this into downstream regulation remain uncertain, although some candidate proteins have been identified. DNA methylation has a vital role in the inactivation of transposons, suggesting that DNA methylation is a key factor in the evolution and adaptation of plants.


Assuntos
Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Histonas/metabolismo , Plantas/genética , Processamento de Proteína Pós-Traducional/genética , RNA de Plantas/metabolismo , Plantas/enzimologia , RNA de Plantas/genética
9.
EMBO Rep ; 11(1): 65-71, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20010803

RESUMO

RNA-directed DNA methylation (RdDM) in plants requires two RNA polymerase (Pol) II-related RNA polymerases, namely Pol IV and Pol V. A genetic screen designed to reveal factors that are important for RdDM in a developmental context in Arabidopsis identified DEFECTIVE IN MERISTEM SILENCING 4 (DMS4). Unlike other mutants defective in RdDM, dms4 mutants have a pleiotropic developmental phenotype. The DMS4 protein is similar to yeast IWR1 (interacts with RNA polymerase II), a conserved putative transcription factor that interacts with Pol II subunits. The DMS4 complementary DNA partly complements the K1 killer toxin hypersensitivity of a yeast iwr1 mutant, suggesting some functional conservation. In the transgenic system studied, mutations in DMS4 directly or indirectly affect Pol IV-dependent secondary short interfering RNAs, Pol V-mediated RdDM, Pol V-dependent synthesis of intergenic non-coding RNA and expression of many Pol II-driven genes. These data suggest that DMS4 might be a regulatory factor for several RNA polymerases, thus explaining its diverse roles in the plant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Metilação de DNA/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , RNA de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Metilação de DNA/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica/fisiologia , Mutação , Fenótipo , RNA de Plantas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Fatores de Transcrição/genética
10.
Proc Natl Acad Sci U S A ; 106(3): 941-6, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19141635

RESUMO

Two forms of a plant-specific RNA polymerase (Pol), PolIV(PolIVa) and PolV(PolIVb), currently defined by their respective largest subunits [NRPD1(NRPD1a) and NRPE1(NRPD1b)], have been implicated in the production and activity of 24-nt small RNAs (sRNAs) in RNA-directed DNA methylation (RdDM). Prevailing models support the view that PolIV(PolIVa) plays an upstream role in RdDM by producing the 24-nt sRNAs, whereas PolV(PolIVb) would act downstream at a structural rather than an enzymatic level to reinforce sRNA production by PolIV(PolIVa) and mediate DNA methylation. However, the composition and mechanism of action of PolIV(PolIVa)/PolV(PolIVb) remain unclear. In this work, we have identified a plant-specific PolV(PolIVb) subunit, NRPE5a, homologous to NRPB5a, a common subunit shared by PolI-III and shown here to be present in PolIV(PolIVa). Our results confirm the combinatorial diversity of PolIV(PolIVa)/PolV(PolIVb) subunit composition and indicate that these plant-specific Pols are eukaryotic-type polymerases. Moreover, we show that nrpe5a-1 mutation differentially impacts sRNAs accumulation at various PolIV(PolIVa)/PolV(PolIVb)-dependent loci, indicating a target-specific requirement for NRPE5a in the process of PolV(PolIVb)-dependent gene silencing. We then describe that the triad aspartate motif present in the catalytic center of PolV(PolIVb) is required for recapitulation of all activities associated with this Pol complex in RdDM, suggesting that RNA polymerization is important for PolV(PolIVb) to perform its regulatory functions.


Assuntos
Arabidopsis/enzimologia , Metilação de DNA , RNA Polimerases Dirigidas por DNA/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/química , Inativação Gênica , Dados de Sequência Molecular , Subunidades Proteicas
11.
Cancer Res Commun ; 2(12): 1590-1600, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36970719

RESUMO

The fundamental difference between benign and malignant tumors lies in their invasive ability. It is believed that malignant conversion of benign tumor cells is induced by a tumor cell-intrinsic accumulation of driver gene mutations. Here, we found that disruption of the Dok-3 tumor suppressor gene led to malignant progression in the intestinal benign tumor model ApcMin/+ mice. However, Dok-3 gene expression was undetectable in epithelial tumor cells and the transplantation of bone marrow cells lacking the Dok-3 gene-induced malignant conversion of epithelial tumor cells in ApcMin/+ mice, indicating a previously unrecognized tumor cell-extrinsic mechanism. Moreover, the Dok-3 loss-induced tumor invasion in ApcMin/+ mice required CD4+ and CD8+ T lymphocytes, but not B lymphocytes. Finally, whole-genome sequencing showed an indistinguishable pattern and level of somatic mutations in tumors irrespective of the Dok-3 gene mutation in ApcMin/+ mice. Together, these data indicate that Dok-3 deficiency is a tumor-extrinsic driving force of malignant progression in ApcMin/+ mice, providing a novel insight into microenvironments in tumor invasion. Significance: This study uncovers tumor cell-extrinsic cues that can induce malignant conversion of benign tumors without intensifying mutagenesis in tumors, a novel concept potentially providing a new therapeutic target in malignancy.


Assuntos
Transformação Celular Neoplásica , Neoplasias Epiteliais e Glandulares , Camundongos , Animais , Transformação Celular Neoplásica/genética , Intestinos , Linfócitos T CD8-Positivos , Microambiente Tumoral
12.
G3 (Bethesda) ; 10(6): 1983-1996, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32265287

RESUMO

To investigate factors influencing pre-mRNA splicing in plants, we conducted a forward genetic screen using an alternatively-spliced GFP reporter gene in Arabidopsis thaliana This effort generated a collection of sixteen mutants impaired in various splicing-related proteins, many of which had not been recovered in any prior genetic screen or implicated in splicing in plants. The factors are predicted to act at different steps of the spliceosomal cycle, snRNP biogenesis pathway, transcription, and mRNA transport. We have described eleven of the mutants in recent publications. Here we present the final five mutants, which are defective, respectively, in RNA-BINDING PROTEIN 45D (rbp45d), DIGEORGE SYNDROME CRITICAL REGION 14 (dgcr14), CYCLIN-DEPENDENT KINASE G2 (cdkg2), INTERACTS WITH SPT6 (iws1) and CAP BINDING PROTEIN 80 (cbp80). We provide RNA-sequencing data and analyses of differential gene expression and alternative splicing patterns for the cbp80 mutant and for several previously published mutants, including smfa and new alleles of cwc16a, for which such information was not yet available. Sequencing of small RNAs from the cbp80 mutant highlighted the necessity of wild-type CBP80 for processing of microRNA (miRNA) precursors into mature miRNAs. Redundancy tests of paralogs encoding several of the splicing factors revealed their functional non-equivalence in the GFP reporter gene system. We discuss the cumulative findings and their implications for the regulation of pre-mRNA splicing efficiency and alternative splicing in plants. The mutant collection provides a unique resource for further studies on a coherent set of splicing factors and their roles in gene expression, alternative splicing and plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Processamento Alternativo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA
13.
Curr Opin Plant Biol ; 10(5): 512-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17702644

RESUMO

RNA-directed DNA methylation contributes substantially to epigenetic regulation of the plant genome. Methylation is guided to homologous DNA target sequences by 24 nt 'heterochromatic' small RNAs produced by nucleolar-localized components of the RNAi machinery and a plant-specific RNA polymerase, Pol IV. Plants contain unusually large and diverse populations of small RNAs, many of which originate from transposons and repeats. These sequences are frequent targets of methylation, and they are able to bring plant genes in their vicinity under small RNA-mediated control. RNA-directed DNA methylation can be removed by enzymatic demethylation, providing plants with a versatile system that facilitates epigenetic plasticity. In addition to subduing transposons, RNA-directed DNA methylation has roles in plant development and, perhaps, stress responses.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , RNA de Plantas/metabolismo , DNA de Plantas/genética , RNA de Plantas/genética
14.
Biochim Biophys Acta ; 1769(5-6): 358-74, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17449119

RESUMO

RNA-directed DNA methylation, which is one of several RNAi-mediated pathways in the nucleus, has been highly elaborated in the plant kingdom. RNA-directed DNA methylation requires for the most part conventional DNA methyltransferases, histone modifying enzymes and RNAi proteins; however, several novel, plant-specific proteins that are essential for this process have been identified recently. DRD1 (defective in RNA-directed DNA methylation) is a putative SWI2/SNF2-like chromatin remodelling protein; DRD2 and DRD3 (renamed NRPD2a and NRPD1b, respectively) are subunits of Pol IVb, a putative RNA polymerase found only in plants. Interestingly, DRD1 and Pol IVb appear to be required not only for RNA-directed de novo methylation, but also for full erasure of methylation when the RNA trigger is withdrawn. These proteins thus have the potential to facilitate dynamic regulation of DNA methylation. Prominent targets of RNA-directed DNA methylation in the Arabidopsis thaliana genome include retrotransposon long terminal repeats (LTRs), which have bidirectional promoter/enhancer activities, and other types of intergenic transposons and repeats. Intergenic solitary LTRs that are targeted for reversible methylation by the DRD1/Pol IVb pathway can potentially act as switches or rheostats for neighboring plant genes. The resulting alterations in gene expression patterns may promote physiological flexibility and adaptation to the environment.


Assuntos
DNA de Plantas/genética , DNA de Plantas/metabolismo , Inativação Gênica , Plantas/genética , Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sequência de Bases , Montagem e Desmontagem da Cromatina , Metilação de DNA , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Genes de Plantas , Histonas/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequências Repetidas Terminais
15.
G3 (Bethesda) ; 8(4): 1367-1377, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29487188

RESUMO

Splicing of pre-mRNA involves two consecutive trans-esterification steps that take place in the spliceosome, a large dynamic ribonucleoprotein complex situated in the nucleus. In addition to core spliceosomal proteins, each catalytic step requires step-specific factors. Although the Arabidopsis thaliana genome encodes around 430 predicted splicing factors, functional information about these proteins is limited. In a forward genetic screen based on an alternatively-spliced GFP reporter gene in Arabidopsis thaliana, we identified a mutant impaired in putative step II factor PRP18a, which has not yet been investigated for its role in pre-mRNA splicing in plants. Step II entails cleavage at the 3' splice site accompanied by ligation of the 5' and 3' exons and intron removal. In the prp18 mutant, splicing of a U2-type intron with non-canonical AT-AC splice sites in GFP pre-mRNA is reduced while splicing of a canonical GT-AG intron is enhanced, resulting in decreased levels of translatable GFP mRNA and GFP protein. These findings suggest that wild-type PRP18a may in some cases promote splicing at weak, non-canonical splice sites. Analysis of genome-wide changes in alternative splicing in the prp18a mutant identified numerous cases of intron retention and a preponderance of altered 3' splice sites, suggesting an influence of PRP18a on 3' splice site selection. The prp18a mutant featured short roots on synthetic medium and small siliques, illustrating that wild-type PRP18a function is needed for a normal phenotype. Our study expands knowledge of plant splicing factors and provides foundational information and resources for further functional studies of PRP18 proteins in plants.


Assuntos
Processamento Alternativo/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Testes Genéticos , Fatores de Processamento de RNA/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas , Genes Reporter , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Íntrons/genética , Modelos Biológicos , Mutação/genética , Fenótipo , Plantas Geneticamente Modificadas , Análise de Sequência de RNA , Spliceossomos/metabolismo
16.
Genetics ; 210(4): 1267-1285, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30297453

RESUMO

Splicing of precursor messenger RNAs (pre-mRNAs) is an essential step in the expression of most eukaryotic genes. Both constitutive splicing and alternative splicing, which produces multiple messenger RNA (mRNA) isoforms from a single primary transcript, are modulated by reversible protein phosphorylation. Although the plant splicing machinery is known to be a target for phosphorylation, the protein kinases involved remain to be fully defined. We report here the identification of pre-mRNA processing 4 (PRP4) KINASE A (PRP4KA) in a forward genetic screen based on an alternatively spliced GFP reporter gene in Arabidopsis thaliana (Arabidopsis). Prp4 kinase is the first spliceosome-associated kinase shown to regulate splicing in fungi and mammals but it has not yet been studied in plants. In the same screen we identified mutants defective in SAC3A, a putative mRNA export factor that is highly coexpressed with PRP4KA in Arabidopsis Whereas the sac3a mutants appear normal, the prp4ka mutants display a pleiotropic phenotype featuring atypical rosettes, late flowering, tall final stature, reduced branching, and lowered seed set. Analysis of RNA-sequencing data from prp4ka and sac3a mutants identified widespread and partially overlapping perturbations in alternative splicing in the two mutants. Quantitative phosphoproteomic profiling of a prp4ka mutant detected phosphorylation changes in several serine/arginine-rich proteins, which regulate constitutive and alternative splicing, and other splicing-related factors. Tests of PRP4KB, the paralog of PRP4KA, indicated that the two genes are not functionally redundant. The results demonstrate the importance of PRP4KA for alternative splicing and plant phenotype, and suggest that PRP4KA may influence alternative splicing patterns by phosphorylating a subset of splicing regulators.


Assuntos
Processamento Alternativo/genética , Proteínas de Arabidopsis/genética , Desenvolvimento Vegetal/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fenótipo , Plantas Geneticamente Modificadas/genética , Fatores de Processamento de RNA , Análise de Sequência de RNA , Spliceossomos/genética
17.
Curr Biol ; 14(9): 801-5, 2004 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-15120073

RESUMO

In plants, the mechanism by which RNA can induce de novo cytosine methylation of homologous DNA is poorly understood. Cytosines in all sequence contexts become modified in response to RNA signals. Recent work has implicated the de novo DNA methyltransferases (DMTases), DRM1 and DRM2, in establishing RNA-directed methylation of the constitutive nopaline synthase promoter, as well as the DMTase MET1 and the putative histone deacetylase HDA6 in maintaining or enhancing CpG methylation induced by RNA. Despite the identification of enzymes that catalyze epigenetic modifications in response to RNA signals, it is unclear how RNA targets DNA for methylation. A screen for mutants defective in RNA-directed DNA methylation identified a novel putative chromatin-remodeling protein, DRD1. This protein belongs to a previously undefined, plant-specific subfamily of SWI2/SNF2-like proteins most similar to the RAD54/ATRX subfamily. In drd1 mutants, RNA-induced non-CpG methylation is almost eliminated at a target promoter, resulting in reactivation, whereas methylation of centromeric and rDNA repeats is unaffected. Thus, unlike the SNF2-like proteins DDM1/Lsh1 and ATRX, which regulate methylation of repetitive sequences, DRD1 is not a global regulator of cytosine methylation. DRD1 is the first SNF2-like protein implicated in an RNA-guided, epigenetic modification of the genome.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Proteínas Nucleares , RNA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis , Northern Blotting , Southern Blotting , Cruzamentos Genéticos , Primers do DNA , Proteínas de Ligação a DNA/genética , Metanossulfonato de Etila , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Dados de Sequência Molecular , Mutagênese , Regiões Promotoras Genéticas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Sulfitos , Fatores de Transcrição/genética , Transgenes/genética
18.
Trends Genet ; 19(5): 253-6, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12711216

RESUMO

The role of aneuploidy in carcinogenesis has long been debated. We argue here that aneuploid genomes are naturally more susceptible to the types of chromosome rearrangement and epigenetic aberration that are found typically in tumor cells. In some cases, the formation of an aneuploid genome might be the initiating step in neoplastic conversion.


Assuntos
Aneuploidia , Genoma , Neoplasias/genética , Animais , Transformação Celular Neoplásica , Aberrações Cromossômicas , Metilação de DNA , Rearranjo Gênico , Humanos , Recombinação Genética
19.
Genetics ; 207(4): 1347-1359, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28971960

RESUMO

In a genetic screen for mutants showing modified splicing of an alternatively spliced GFP reporter gene in Arabidopsis thaliana, we identified mutations in genes encoding the putative U1 small nuclear ribonucleoprotein (snRNP) factors RBM25 and PRP39a. The latter has not yet been studied for its role in pre-messenger RNA (pre-mRNA) splicing in plants. Both proteins contain predicted RNA-binding domains and have been implicated in 5' splice site selection in yeast and metazoan cells. In rbm25 mutants, splicing efficiency of GFP pre-mRNA was reduced and GFP protein levels lowered relative to wild-type plants. By contrast, prp39a mutants exhibited preferential splicing of a U2-type AT-AC intron in GFP pre-mRNA and elevated levels of GFP protein. These opposing findings indicate that impaired function of either RBM25 or PRP39a can differentially affect the same pre-mRNA substrate. Given a prior genome-wide analysis of alternative splicing in rbm25 mutants, we focused on examining the alternative splicing landscape in prp39a mutants. RNA-seq experiments performed using two independent prp39a alleles revealed hundreds of common genes undergoing changes in alternative splicing, including PRP39a itself, a second putative U1 snRNP component PRP40b, and genes encoding a number of general transcription-related proteins. The prp39a mutants displayed somewhat delayed flowering, shorter stature, and reduced seed set but no other obvious common defects under normal conditions. Mutations in PRP39b, the paralog of PRP39a, did not visibly alter GFP expression, indicating the paralogs are not functionally equivalent in this system. Our study provides new information on the contribution of PRP39a to alternative splicing and expands knowledge of plant splicing factors.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas Mutantes/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Fatores de Processamento de RNA/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo/genética , Arabidopsis/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Íntrons/genética , Mutação , Proteínas Nucleares/genética , Precursores de RNA/genética , Sítios de Splice de RNA/genética , Ribonucleoproteína Nuclear Pequena U1/genética
20.
Genetics ; 203(4): 1709-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27317682

RESUMO

Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein.


Assuntos
Processamento Alternativo/genética , Proteínas de Arabidopsis/genética , Proteínas Mutantes/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Corpos Enovelados/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Genoma de Planta , Proteínas de Fluorescência Verde/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Mutantes/biossíntese , Proteínas de Ligação a RNA/biossíntese , Spliceossomos/genética , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA