Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nucleic Acids Res ; 45(12): 7261-7275, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28510759

RESUMO

Mcm10 is an essential eukaryotic factor required for DNA replication. The replication fork helicase is composed of Cdc45, Mcm2-7 and GINS (CMG). DDK is an S-phase-specific kinase required for replication initiation, and the DNA primase-polymerase in eukaryotes is pol α. Mcm10 forms oligomers in vitro, mediated by the coiled-coil domain at the N-terminal region of the protein. We characterized an Mcm10 mutant at the N-terminal Domain (NTD), Mcm10-4A, defective for self-interaction. We found that the Mcm10-4A mutant was defective for stimulating DDK phosphorylation of Mcm2, binding to eighty-nucleotide ssDNA, and recruiting pol α to Mcm2-7 in vitro. Expression of wild-type levels of mcm10-4A resulted in severe growth and DNA replication defects in budding yeast cells, with diminished DDK phosphorylation of Mcm2. We then expressed the mcm10-4A in mcm5-bob1 mutant cells to bypass the defects mediated by diminished stimulation of DDK phosphorylation of Mcm2. Expression of wild-type levels of mcm10-4A in mcm5-bob1 mutant cells resulted in severe growth and DNA replication defects, along with diminished RPA signal at replication origins. We also detected diminished GINS and pol-α recruitment to the Mcm2-7 complex. We conclude that an intact Mcm10 coiled-coil interaction surface is important for origin melting, helicase assembly, and the recruitment of pol α to Mcm2-7.


Assuntos
DNA Polimerase I/genética , Replicação do DNA , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Polimerase I/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Cinética , Camundongos , Proteínas de Manutenção de Minicromossomo/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
2.
J Biol Chem ; 292(8): 3062-3073, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28082681

RESUMO

The assembly of the replication fork helicase during S phase is key to the initiation of DNA replication in eukaryotic cells. One step in this assembly in budding yeast is the association of Cdc45 with the Mcm2-7 heterohexameric ATPase, and a second step is the assembly of the tetrameric GINS (GG-Ichi-Nii-San) complex with Mcm2-7. Dbf4-dependent kinase (DDK) and S-phase cyclin-dependent kinase (S-CDK) are two S phase-specific kinases that phosphorylate replication proteins during S phase, and Dpb11, Sld2, Sld3, Pol ϵ, and Mcm10 are factors that are also required for replication initiation. However, the exact roles of these initiation factors in assembly of the replication fork helicase remain unclear. We show here that Dpb11 stimulates DDK phosphorylation of the minichromosome maintenance complex protein Mcm4 alone and also of the Mcm2-7 complex and the dsDNA-loaded Mcm2-7 complex. We further demonstrate that Dpb11 can directly recruit DDK to Mcm4. A DDK phosphomimetic mutant of Mcm4 bound Dpb11 with substantially higher affinity than wild-type Mcm4, suggesting a mechanism to recruit Dpb11 to DDK-phosphorylated Mcm2-7. Furthermore, dsDNA-loaded Mcm2-7 harboring the DDK phosphomimetic Mcm4 mutant bound GINS in the presence of Dpb11, suggesting a mechanism for how GINS is recruited to Mcm2-7. We isolated a mutant of Dpb11 that is specifically defective for binding to Mcm4. This mutant, when expressed in budding yeast, diminished cell growth and DNA replication, substantially decreased Mcm4 phosphorylation, and decreased association of GINS with replication origins. We conclude that Dpb11 functions with DDK and Mcm4 in a positive amplification mechanism to trigger the assembly of the replication fork helicase.


Assuntos
Replicação do DNA , DNA Fúngico/genética , Proteínas Fúngicas/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/metabolismo , Fosforilação , Saccharomycetales/citologia
3.
Nucleic Acids Res ; 44(1): 315-29, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26582917

RESUMO

Mcm10 is an essential replication factor that is required for DNA replication in eukaryotes. Two key steps in the initiation of DNA replication are the assembly and activation of Cdc45-Mcm2-7-GINS (CMG) replicative helicase. However, it is not known what coordinates helicase assembly with helicase activation. We show in this manuscript, using purified proteins from budding yeast, that Mcm10 directly interacts with the Mcm2-7 complex and Cdc45. In fact, Mcm10 recruits Cdc45 to Mcm2-7 complex in vitro. To study the role of Mcm10 in more detail in vivo we used an auxin inducible degron in which Mcm10 is degraded upon addition of auxin. We show in this manuscript that Mcm10 is required for the timely recruitment of Cdc45 and GINS recruitment to the Mcm2-7 complex in vivo during early S phase. We also found that Mcm10 stimulates Mcm2 phosphorylation by DDK in vivo and in vitro. These findings indicate that Mcm10 plays a critical role in coupling replicative helicase assembly with helicase activation. Mcm10 is first involved in the recruitment of Cdc45 to the Mcm2-7 complex. After Cdc45-Mcm2-7 complex assembly, Mcm10 promotes origin melting by stimulating DDK phosphorylation of Mcm2, which thereby leads to GINS attachment to Mcm2-7.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos , Fosforilação , Ligação Proteica , Origem de Replicação
4.
Proc Natl Acad Sci U S A ; 112(36): 11223-8, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305950

RESUMO

Dbf4-dependent kinase (DDK) phosphorylates minichromosome maintenance 2 (Mcm2) during S phase in yeast, and Sld3 recruits cell division cycle 45 (Cdc45) to minichromosome maintenance 2-7 (Mcm2-7). We show here DDK-phosphoryled Mcm2 preferentially interacts with Cdc45 in vivo, and that Sld3 stimulates DDK phosphorylation of Mcm2 by 11-fold. We identified a mutation of the replication initiation factor Sld3, Sld3-m16, that is specifically defective in stimulating DDK phosphorylation of Mcm2. Wild-type expression levels of sld3-m16 result in severe growth and DNA replication defects. Cells expressing sld3-m16 exhibit no detectable Mcm2 phosphorylation in vivo, reduced replication protein A-ChIP signal at an origin, and diminished Go, Ichi, Ni, and San association with Mcm2-7. Treslin, the human homolog of Sld3, stimulates human DDK phosphorylation of human Mcm2 by 15-fold. DDK phosphorylation of human Mcm2 decreases the affinity of Mcm5 for Mcm2, suggesting a potential mechanism for helicase ring opening. These data suggest a conserved mechanism for replication initiation: Sld3/Treslin coordinates Cdc45 recruitment to Mcm2-7 with DDK phosphorylation of Mcm2 during S phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Mutação , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
5.
J Biol Chem ; 290(2): 1210-21, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25471369

RESUMO

The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS (CMG). The Dbf4-Cdc7 kinase phosphorylates Mcm2 in vitro, but the in vivo role for Dbf4-Cdc7 phosphorylation of Mcm2 is unclear. We find that budding yeast Dbf4-Cdc7 phosphorylates Mcm2 in vivo under normal conditions during S phase. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 confers a dominant-negative phenotype with a severe growth defect. Inhibiting Dbf4-Cdc7 phosphorylation of Mcm2 under wild-type expression conditions also results in impaired DNA replication, substantially decreased single-stranded formation at an origin, and markedly disrupted interaction between GINS and Mcm2-7 during S phase. In vitro, Dbf4-Cdc7 kinase (DDK) phosphorylation of Mcm2 substantially weakens the interaction between Mcm2 and Mcm5, and Dbf4-Cdc7 phosphorylation of Mcm2 promotes Mcm2-7 ring opening. The extrusion of ssDNA from the central channel of Mcm2-7 triggers GINS attachment to Mcm2-7. Thus, Dbf4-Cdc7 phosphorylation of Mcm2 may open the Mcm2-7 ring at the Mcm2-Mcm5 interface, allowing for single-stranded DNA extrusion and subsequent GINS assembly with Mcm2-7.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/genética , DNA de Cadeia Simples/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , DNA Helicases/química , Replicação do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/metabolismo , Fosforilação , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
J Biol Chem ; 290(45): 27414-27424, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26405041

RESUMO

The initiation of DNA replication is a highly regulated process in eukaryotic cells, and central to the process of initiation is the assembly and activation of the replication fork helicase. The replication fork helicase is comprised of CMG (Cdc45, Mcm2-7, and GINS) in eukaryotic cells, and the mechanism underlying assembly of the CMG during S phase was studied in this article. We identified a point mutation of Sld3 that is specifically defective for Mcm3 and Mcm5 interaction (sld3-m10), and also identified a point mutation of Sld3 that is specifically defective for single-stranded DNA (ssDNA) interaction (sld3-m9). Expression of wild-type levels of sld3-m9 resulted in a severe DNA replication defect with no recruitment of GINS to Mcm2-7, whereas expression of wild-type levels of sld3-m10 resulted in a severe replication defect with no Cdc45 recruitment to Mcm2-7. We propose a model for Sld3-mediated control of replication initiation, wherein Sld3 manages the proper assembly of the CMG during S phase. We also find that the biochemical functions identified for Sld3 are conserved in human Treslin, suggesting that Treslin orchestrates assembly of the CMG in human cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , Fase S , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , DNA de Cadeia Simples/metabolismo , Humanos , Componente 3 do Complexo de Manutenção de Minicromossomo/química , Componente 3 do Complexo de Manutenção de Minicromossomo/genética , Componente 3 do Complexo de Manutenção de Minicromossomo/metabolismo , Modelos Biológicos , Mutação Puntual , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 290(12): 7586-601, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25659432

RESUMO

Dpb11 is required for the initiation of DNA replication in budding yeast. Dpb11 binds to S-phase cyclin-dependent kinase-phosphorylated Sld2 and Sld3 to form a ternary complex during S phase. The replication fork helicase in eukaryotes is composed of Cdc45, Mcm2-7, and GINS. We show here, using purified proteins from budding yeast, that Dpb11 alone binds to Mcm2-7 and that Dpb11 also competes with GINS for binding to Mcm2-7. Furthermore, Dpb11 binds directly to single-stranded DNA (ssDNA), and ssDNA inhibits the Dpb11 interaction with Mcm2-7. We also found that Dpb11 can recruit Cdc45 to Mcm2-7. We identified a mutant of the BRCT4 motif of Dpb11 that remains bound to Mcm2-7 in the presence of ssDNA (dpb11-m1,m2,m3,m5), and this mutant exhibits a DNA replication defect when expressed in budding yeast cells. Expression of this mutant results in increased interaction between Dpb11 and Mcm2-7 during S phase, impaired GINS interaction with Mcm2-7 during S phase, and decreased replication protein A (RPA) interaction with origin DNA during S phase. We propose a model in which Dpb11 first recruits Cdc45 to Mcm2-7. Dpb11, although bound to Cdc45·Mcm2-7, can block the interaction between GINS and Mcm2-7. Upon extrusion of ssDNA from the central channel of Mcm2-7, Dpb11 dissociates from Mcm2-7, and Dpb11 binds to ssDNA, thereby allowing GINS to bind to Cdc45·Mcm2-7. Finally, we propose that Dpb11 functions with Sld2 and Sld3 to help control the assembly of the replication fork helicase.


Assuntos
Proteínas de Ciclo Celular/fisiologia , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Clonagem Molecular , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética
8.
J Biol Chem ; 289(4): 1948-59, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24307213

RESUMO

Assembly of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase complex must be regulated to ensure that DNA unwinding is coupled with DNA synthesis. Sld2 is required for the initiation of DNA replication in budding yeast. We identified a mutant of Sld2, Sld2-m1,4, that is specifically defective in Mcm2-7 binding. When this sld2-m1,4 mutant is expressed, cells exhibit severe inhibition of DNA replication. Furthermore, the CMG complex assembles prematurely in G1 in mutant cells, but not wild-type cells. These data suggest that Sld2 binding to Mcm2-7 is essential to block the inappropriate formation of a CMG helicase complex in G1. We also study a mutant of Sld2 that is defective in binding DNA, sld2-DNA, and find that sld2-DNA cells exhibit no GINS-Mcm2-7 interaction. These data suggest that Sld2 association with DNA is required for CMG assembly in S phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , Proteínas de Manutenção de Minicromossomo/metabolismo , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
J Biol Chem ; 289(43): 29975-93, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25193669

RESUMO

Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the "Pattern Finder" G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Mitocondrial/genética , Doença/genética , Quadruplex G , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Deleção de Sequência/genética , Envelhecimento/genética , Animais , Sequência de Bases , Dicroísmo Circular , Biologia Computacional , Sequência Conservada/genética , Dano ao DNA , Evolução Molecular , Genoma Mitocondrial/genética , Humanos , Dados de Sequência Molecular , Neoplasias/genética , Desnaturação de Ácido Nucleico , Motivos de Nucleotídeos/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Telômero/metabolismo , Raios Ultravioleta
10.
J Biol Chem ; 288(11): 7550-7563, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23382391

RESUMO

Replicative polymerase stalling is coordinated with replicative helicase stalling in eukaryotes, but the mechanism underlying this coordination is not known. Cdc45 activates the Mcm2-7 helicase. We report here that Cdc45 from budding yeast binds tightly to long (≥ 40 nucleotides) genomic single-stranded DNA (ssDNA) and that 60mer ssDNA specifically disrupts the interaction between Cdc45 and Mcm2-7. We identified a mutant of Cdc45 that does not bind to ssDNA. When this mutant of cdc45 is expressed in budding yeast cells exposed to hydroxyurea, cell growth is severely inhibited, and excess RPA accumulates at or near an origin. Chromatin immunoprecipitation suggests that helicase movement is uncoupled from polymerase movement for mutant cells exposed to hydroxyurea. These data suggest that Cdc45-ssDNA interaction is important for stalling the helicase during replication stress.


Assuntos
DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/fisiologia , Alelos , Anisotropia , Biotina/química , Separação Celular , DNA Helicases/genética , Replicação do DNA , DNA de Cadeia Simples/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Citometria de Fluxo , Glutationa Transferase/metabolismo , Hidroxiureia/farmacologia , Microscopia de Fluorescência/métodos , Modelos Biológicos , Mutação , Fosforilação
14.
J Biol Chem ; 287(23): 19188-98, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22500020

RESUMO

DNA helicases are directly responsible for catalytically unwinding duplex DNA in an ATP-dependent and directionally specific manner and play essential roles in cellular nucleic acid metabolism. It has been conventionally thought that DNA helicases are inhibited by bulky covalent DNA adducts in a strand-specific manner. However, the effects of highly stable alkyl phosphotriester (PTE) lesions that are induced by chemical mutagens and refractory to DNA repair have not been previously studied for their effects on helicases. In this study, DNA repair and replication helicases were examined for unwinding a forked duplex DNA substrate harboring a single isopropyl PTE specifically positioned in the helicase-translocating or -nontranslocating strand within the double-stranded region. A comparison of SF2 helicases (RecQ, RECQ1, WRN, BLM, FANCJ, and ChlR1) with a SF1 DNA repair helicase (UvrD) and two replicative helicases (MCM and DnaB) demonstrates unique differences in the effect of the PTE on the DNA unwinding reactions catalyzed by these enzymes. All of the SF2 helicases tested were inhibited by the PTE lesion, whereas UvrD and the replication fork helicases were fully tolerant of the isopropyl backbone modification, irrespective of strand. Sequestration studies demonstrated that RECQ1 helicase was trapped by the PTE lesion only when it resided in the helicase-translocating strand. Our results are discussed in light of the current models for DNA unwinding by helicases that are likely to encounter sugar phosphate backbone damage during biological DNA transactions.


Assuntos
DNA Helicases/química , Reparo do DNA , Replicação do DNA , Modelos Químicos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , DNA Helicases/metabolismo , DNA Bacteriano/biossíntese , DNA Bacteriano/química , Escherichia coli/enzimologia , Humanos , Methanobacterium/enzimologia , Organofosfatos/química , Organofosfatos/metabolismo
15.
Nucleic Acids Res ; 39(7): 2580-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21109535

RESUMO

Sld2 is essential for the initiation of DNA replication, but the mechanism underlying its role in replication is not fully understood. The S-phase cyclin dependent kinase (S-CDK) triggers the association of Sld2 with Dpb11, and a phosphomimetic mutation of Sld2, Sld2T84D, functionally mimics the S-CDK phosphorylated state of Sld2. We report that Sld2T84D binds directly to the single-stranded (ss) DNA of two different origins of replication, and S-CDK phosphorylation of Sld2 stimulates the binding of Sld2 to origin ssDNA. Sld2T84D binds to a thymine-rich ssDNA region of the origin ARS1, and substitution of ARS1 thymines with adenines completely disrupts binding of Sld2T84D. Sld2T84D enhances the ability of origin ssDNA to pulldown Dpb11, and Sld2 binding to origin ssDNA may be important to allow Sld2 and Dpb11 to associate with origin DNA. We also report that Sld2T84D anneals ssDNA of an origin sequence. Dpb11 anneals ssDNA to low levels, and the addition of Sld2T84D with Dpb11 results in higher annealing activity than that of either protein alone. Sld2-stimulated annealing may be important for maintaining genome stability during the initiation of DNA replication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA de Cadeia Simples/metabolismo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenina/química , Sequência de Bases , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Quinases Ciclina-Dependentes/metabolismo , DNA de Cadeia Simples/química , Dados de Sequência Molecular , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Timina/análise , Timina/química
16.
J Biol Chem ; 286(21): 18602-13, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21460226

RESUMO

The replication fork helicase in eukaryotic cells is comprised of Cdc45, Mcm2-7, and GINS (CMG complex). In budding yeast, Sld3, Sld2, and Dpb11 are required for the initiation of DNA replication, but Sld3 and Dpb11 do not travel with the replication fork. Sld3 and Cdc45 bind to early replication origins during the G(1) phase of the cell cycle, whereas Sld2, GINS, polymerase ε, and Dpb11 form a transient preloading complex that associates with origins during S phase. We show here that Sld3 binds tightly to origin single-stranded DNA (ssDNA). CDK-phosphorylated Sld3 binds to origin ssDNA with similar high affinity. Origin ssDNA does not disrupt the interaction between Sld3 and Dpb11, and origin ssDNA does not disrupt the interaction between Sld3 and Cdc45. However, origin ssDNA substantially disrupts the interaction between Sld3 and Mcm2-7. GINS and Sld3 compete with one another for binding to Mcm2-7. However, in a mixture of Sld3, GINS, and Mcm2-7, origin ssDNA inhibits the interaction between Sld3 and Mcm2-7, whereas origin ssDNA promotes the association between GINS and Mcm2-7. We also show that origin single-stranded DNA promotes the formation of the CMG complex. We conclude that origin single-stranded DNA releases Sld3 from Mcm2-7, allowing GINS to bind Mcm2-7.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Origem de Replicação/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Componente 7 do Complexo de Manutenção de Minicromossomo , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Fosforilação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
J Biol Chem ; 286(16): 14157-67, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21362622

RESUMO

Sld3 is essential for the initiation of DNA replication, but Sld3 does not travel with a replication fork. GINS binds to Cdc45 and Mcm2-7 to form the replication fork helicase in eukaryotes. We purified Sld3, Cdc45, GINS, and Mcm2-7 and studied their interaction and assembly into complexes. Sld3 binds tightly to Cdc45 in the presence or absence of cyclin-dependent kinase activity. Furthermore, Sld3 binds tightly to the Mcm2-7 complex, and a ternary complex forms among Cdc45, Mcm2-7, and Sld3, with a 1:1:1 stoichiometry (CMS complex). GINS binds directly to Mcm2-7, and GINS competes with Sld3 for Mcm2-7 binding. GINS also binds directly to Cdc45, and GINS competes with Sld3 for Cdc45 binding. Cdc45, Mcm2-7, and GINS form a ternary complex with a stoichiometry of 1:1:1 (CMG complex). Size exclusion data reveal that when Sld3, Cdc45, Mcm2-7, and GINS are added together, the result is a mixture of CMS and CMG complexes. The data suggest that GINS and Sld3 compete with one another for Mcm2-7 and Cdc45 binding. Our results are consistent with a model wherein GINS trades places with Sld3 at a replication origin, contributing to the activation of the replication fork helicase.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Ligação Competitiva , Ciclo Celular , Proteínas de Ciclo Celular , Replicação do DNA , Glutationa Transferase/metabolismo , Ligação Proteica , Origem de Replicação
18.
J Biol Chem ; 286(42): 36414-26, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21868389

RESUMO

The Cdc45-Mcm2-7-GINS (CMG) complex is the replication fork helicase in eukaryotes. Synthetic lethal with Dpb11-1 (Sld2) is required for the initiation of DNA replication, and the S phase cyclin-dependent kinase (S-CDK) phosphorylates Sld2 in vivo. We purified components of the replication initiation machinery and studied their interactions in vitro. We found that unphosphorylated or CDK-phosphorylated Sld2 binds to the mini chromosome maintenance (Mcm)2-7 complex with similar efficiency. Sld2 interaction with Mcm2-7 blocks the interaction between GINS and Mcm2-7. The interaction between CDK-phosphorylated Sld2 and Mcm2-7 is substantially inhibited by origin single-stranded DNA (ssDNA). Furthermore, origin ssDNA allows GINS to bind to Mcm2-7 in the presence of CDK-phosphorylated Sld2. However, unphosphorylated Sld2 blocks the interaction between GINS and Mcm2-7 even in the presence of origin ssDNA. We identified a mutant of Sld2 that does not bind to DNA. When this mutant is expressed in yeast cells, cell growth is severely inhibited with very slow progression into S phase. We propose a model wherein Sld2 blocks the interaction between GINS and Mcm2-7 in vivo. Once origin ssDNA is extruded from the Mcm2-7 ring and CDK phosphorylates Sld2, the origin ssDNA binds to CDK-phosphorylated Sld2. This event may allow the interaction between GINS and Mcm2-7 in vivo. Thus, CDK phosphorylation of Sld2 may be important to release Sld2 from Mcm2-7, thereby allowing GINS to bind Mcm2-7. Furthermore, origin ssDNA may stimulate the formation of the CMG complex by alleviating inhibitory interactions between Sld2 with Mcm2-7.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Multimerização Proteica/fisiologia , Origem de Replicação/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , DNA Fúngico/genética , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Componente 7 do Complexo de Manutenção de Minicromossomo , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Fosforilação/fisiologia , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
19.
Methods ; 51(3): 358-62, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20170732

RESUMO

Dbf4-Cdc7 phosphorylation of the Mcm2-7 complex is required for the activation of the replication fork helicase in budding yeast cells. There is a genetic interaction between Dbf4-Cdc7 and Mcm2, and Dbf4-Cdc7 phosphorylates Mcm2 in vitro and in vivo. We initiated a focused study of how Dbf4-Cdc7 phosphorylates Mcm2 in budding yeast, and we also investigated the in vivo implications of this kinase reaction. Described herein are detailed methods for how we conducted biochemical and genetic experiments to dissect the mechanism and function of Dbf4-Cdc7 phosphorylation of Mcm2 in budding yeast cells. The methods are likely applicable to other kinase reactions and studies of replication fork helicases from other organisms.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/genética , Sequência de Aminoácidos , Sobrevivência Celular , Humanos , Dados de Sequência Molecular , Fosforilação , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
20.
Nano Lett ; 10(3): 1022-7, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20121107

RESUMO

Optical encoders are commonly used in macroscopic machines to make precise measurements of distance and velocity by translating motion into a periodic signal. Here we show how Forster resonance energy transfer can be used to implement this technique at the single-molecule scale. We incorporate a series of acceptor dye molecules into self-assembling DNA, and the periodic signal resulting from unhindered motion of a donor-labeled molecular motor provides nanometer-scale resolution in milliseconds.


Assuntos
DNA/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Dispositivos Ópticos , Transdutores , Cristalização/métodos , DNA/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA