Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 74(7): 2416-2432, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36208446

RESUMO

Seed maturation is the developmental process that prepares the embryo for the desiccated waiting period before germination. It is associated with a series of physiological changes leading to the establishment of seed dormancy, seed longevity, and desiccation tolerance. We studied translational changes during seed maturation and observed a gradual reduction in global translation during seed maturation. Transcriptome and translatome profiling revealed specific reduction in the translation of thousands of genes. By including previously published data on germination and seedling establishment, a regulatory network based on polysome occupancy data was constructed: SeedTransNet. Network analysis predicted translational regulatory pathways involving hundreds of genes with distinct functions. The network identified specific transcript sequence features suggesting separate translational regulatory circuits. The network revealed several seed maturation-associated genes as central nodes, and this was confirmed by specific seed phenotypes of the respective mutants. One of the regulators identified, an AWPM19 family protein, PM19-Like1 (PM19L1), was shown to regulate seed dormancy and longevity. This putative RNA-binding protein also affects the translational regulation of its target mRNA, as identified by SeedTransNet. Our data show the usefulness of SeedTransNet in identifying regulatory pathways during seed phase transitions.


Assuntos
Arabidopsis , Germinação , Germinação/genética , Arabidopsis/metabolismo , Transcriptoma , Plântula/metabolismo , Sementes/metabolismo
2.
Comput Struct Biotechnol J ; 20: 1567-1579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465158

RESUMO

Gene expression profiling together with unsupervised analysis methods, typically clustering methods, has been used extensively in cancer research to unravel, e.g., new molecular subtypes that hold promise of disease refinement that may ultimately benefit patients. However, many of the commonly used methods require a prespecified number of clusters to extract and frequently require some type of feature pre-selection, e.g. variance filtering. This introduces subjectivity to the process of cluster discovery and the definition of putative novel tumor subtypes. Here, we introduce SRIQ, a novel unsupervised clustering method that could circumvent some of the issues in commonly used unsupervised analysis methods. SRIQ incorporates concepts from random forest machine learning as well as quality threshold- and k-nearest neighbor clustering. It is implemented as a Java and Python pipeline including data pre-processing, differential expression analysis, and pathway analysis. Using 434 lung adenocarcinomas profiled by RNA sequencing, we demonstrate the technical reproducibility of SRIQ and benchmark its performance compared to the commonly used consensus clustering method. Based on differential gene expression analysis and auxiliary molecular data we show that SRIQ can define new tumor subsets that appear biologically relevant and consistent compared and that these new subgroups seem to refine existing transcriptional subtypes that were defined using consensus clustering. Together, this provides support that SRIQ may be a useful new tool for unsupervised analysis of gene expression data from human malignancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA