Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bull World Health Organ ; 101(7): 487-492, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37397176

RESUMO

Problem: Direct application of digital health technologies from high-income settings to low- and middle-income countries may be inappropriate due to challenges around data availability, implementation and regulation. Hence different approaches are needed. Approach: Within the Viet Nam ICU Translational Applications Laboratory project, since 2018 we have been developing a wearable device for individual patient monitoring and a clinical assessment tool to improve dengue disease management. Working closely with local staff at the Hospital for Tropical Diseases, Ho Chi Minh City, we developed and tested a prototype of the wearable device. We obtained perspectives on design and use of the sensor from patients. To develop the assessment tool, we used existing research data sets, mapped workflows and clinical priorities, interviewed stakeholders and held workshops with hospital staff. Local setting: In Viet Nam, a lower middle-income country, the health-care system is in the nascent stage of implementing digital health technologies. Relevant changes: Based on patient feedback, we are altering the design of the wearable sensor to increase comfort. We built the user interface of the assessment tool based on the core functionalities selected by workshop attendees. The interface was subsequently tested for usability in an iterative manner by the clinical staff members. Lessons learnt: The development and implementation of digital health technologies need an interoperable and appropriate plan for data management including collection, sharing and integration. Engagements and implementation studies should be conceptualized and conducted alongside the digital health technology development. The priorities of end-users, and understanding context and regulatory landscape are crucial for success.


Assuntos
Inteligência Artificial , Atenção à Saúde , Humanos , Vietnã , Fatores de Risco
2.
EBioMedicine ; 104: 105164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38815363

RESUMO

BACKGROUND: Dengue epidemics impose considerable strain on healthcare resources. Real-time continuous and non-invasive monitoring of patients admitted to the hospital could lead to improved care and outcomes. We evaluated the performance of a commercially available wearable (SmartCare) utilising photoplethysmography (PPG) to stratify clinical risk for a cohort of hospitalised patients with dengue in Vietnam. METHODS: We performed a prospective observational study for adult and paediatric patients with a clinical diagnosis of dengue at the Hospital for Tropical Disease, Ho Chi Minh City, Vietnam. Patients underwent PPG monitoring early during admission alongside standard clinical care. PPG waveforms were analysed using machine learning models. Adult patients were classified between 3 severity classes: i) uncomplicated (ward-based), ii) moderate-severe (emergency department-based), and iii) severe (ICU-based). Data from paediatric patients were split into 2 classes: i) severe (during ICU stay) and ii) follow-up (14-21 days after the illness onset). Model performances were evaluated using standard classification metrics and 5-fold stratified cross-validation. FINDINGS: We included PPG and clinical data from 132 adults and 15 paediatric patients with a median age of 28 (IQR, 21-35) and 12 (IQR, 9-13) years respectively. 1781 h of PPG data were available for analysis. The best performing convolutional neural network models (CNN) achieved a precision of 0.785 and recall of 0.771 in classifying adult patients according to severity class and a precision of 0.891 and recall of 0.891 in classifying between disease and post-disease state in paediatric patients. INTERPRETATION: We demonstrate that the use of a low-cost wearable provided clinically actionable data to differentiate between patients with dengue of varying severity. Continuous monitoring and connectivity to early warning systems could significantly benefit clinical care in dengue, particularly within an endemic setting. Work is currently underway to implement these models for dynamic risk predictions and assist in individualised patient care. FUNDING: EPSRC Centre for Doctoral Training in High-Performance Embedded and Distributed Systems (HiPEDS) (Grant: EP/L016796/1) and the Wellcome Trust (Grants: 215010/Z/18/Z and 215688/Z/19/Z).


Assuntos
Dengue , Aprendizado de Máquina , Fotopletismografia , Índice de Gravidade de Doença , Dispositivos Eletrônicos Vestíveis , Humanos , Feminino , Masculino , Estudos Prospectivos , Adulto , Fotopletismografia/métodos , Fotopletismografia/instrumentação , Criança , Adolescente , Dengue/diagnóstico , Adulto Jovem , Vietnã
3.
IEEE Trans Biomed Circuits Syst ; 17(2): 349-361, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37163387

RESUMO

This article presents a novel PPG acquisition platform capable of synchronous multi-wavelength signal acquisition from two measurement locations with up to 4 independent wavelengths from each in parallel. The platform is fully configurable and operates at 1ksps, accommodating a wide variety of transmitters and detectors to serve as both a research tool for experimentation and a clinical tool for disease monitoring. The sensing probes presented in this work acquire 4 PPG channels from the wrist and 4 PPG channels from the fingertip, with wavelengths such that surrogates for pulse wave velocity and haematocrit can be extracted. For conventional PPG sensing, we have achieved the mean error of 4.08 ± 3.72 bpm for heart-rate and a mean error of 1.54 ± 1.04% for SpO 2 measurement, with the latter lying within the FDA limits for commercial pulse oximeters. We have further evaluated over 700 individual peak-to-peak time differences between wrist and fingertip signals, achieving a normalized weighted average PWV of 5.80 ± 1.58 m/s, matching with values of PWV found for this age group in literature. Lastly, we introduced and computed a haematocrit ratio ( Rhct) between the deep IR and deep red wavelength from the fingertip sensor, finding a significant difference between male and female values (median of 1.9 and 2.93 respectively) pointing to devices sensitivity to Hct.


Assuntos
Fotopletismografia , Análise de Onda de Pulso , Masculino , Humanos , Feminino , Oximetria , Oxigênio , Dedos , Frequência Cardíaca
4.
Front Physiol ; 13: 1020458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439252

RESUMO

Electrocardiogram (ECG) and photoplethysmogram (PPG) are commonly used to determine the vital signs of heart rate, respiratory rate, and oxygen saturation in patient monitoring. In addition to simple observation of those summarized indexes, waveform signals can be analyzed to provide deeper insights into disease pathophysiology and support clinical decisions. Such data, generated from continuous patient monitoring from both conventional bedside and low-cost wearable monitors, are increasingly accessible. However, the recorded waveforms suffer from considerable noise and artifacts and, hence, are not necessarily used prior to certain quality control (QC) measures, especially by those with limited programming experience. Various signal quality indices (SQIs) have been proposed to indicate signal quality. To facilitate and harmonize a wider usage of SQIs in practice, we present a Python package, named vital_sqi, which provides a unified interface to the state-of-the-art SQIs for ECG and PPG signals. The vital_sqi package provides with seven different peak detectors and access to more than 70 SQIs by using different settings. The vital_sqi package is designed with pipelines and graphical user interfaces to enable users of various programming fluency to use the package. Multiple SQI extraction pipelines can take the PPG and ECG waveforms and generate a bespoke SQI table. As these SQI scores represent the signal features, they can be input in any quality classifier. The package provides functions to build simple rule-based decision systems for signal segment quality classification using user-defined SQI thresholds. An experiment with a carefully annotated PPG dataset suggests thresholds for relevant PPG SQIs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA