Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Environ Sci Pollut Res Int ; 31(33): 45697-45710, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38977549

RESUMO

The Danube River is, at 2857 km, the second longest river in Europe and the most international river in the world with 19 countries in its catchment. Along the entire river, faecal pollution levels are mainly influenced by point-source emissions from treated and untreated sewage of municipal origin under base-flow conditions. In the past 2 decades, large investments in wastewater collection and treatment infrastructure were made in the European Union (EU) Member States located in the Danube River Basin (DRB). Overall, the share of population equivalents with appropriately biologically treated wastewater (without disinfection) has increased from 69% to more than 85%. The proportion of tertiary treatment has risen from 46 to 73%. In contrast, no comparable improvements of wastewater infrastructure took place in non-EU Member States in the middle and lower DRB, where a substantial amount of untreated wastewater is still directly discharged into the Danube River. Faecal pollution levels along the whole Danube River and the confluence sites of the most important tributaries were monitored during four Danube River expeditions, the Joint Danube Surveys (JDS). During all four surveys, the longitudinal patterns of faecal pollution were highly consistent, with generally lower levels in the upper section and elevated levels and major hotspots in the middle and lower sections of the Danube River. From 2001 to 2019, a significant decrease in faecal pollution levels could be observed in all three sections with average reduction rates between 72 and 86%. Despite this general improvement in microbiological water quality, no such decreases were observed for the highly polluted stretch in Central Serbia. Further improvements in microbiological water quality can be expected for the next decades on the basis of further investments in wastewater infrastructure in the EU Member States, in the middle and lower DRB. In the upper DRB, and due to the high compliance level as regards collection and treatment, improvements can further be achieved by upgrading sewage treatment plants with quaternary treatment steps as well as by preventing combined sewer overflows. The accession of the Western Balkan countries to the EU would also significantly boost investments in wastewater infrastructure and water quality improvements in the middle section of the Danube. Continuing whole-river expeditions such as the Joint Danube Surveys is highly recommended to monitor the developments in water quality in the future.


Assuntos
Monitoramento Ambiental , Fezes , Rios , Águas Residuárias , Rios/química , Águas Residuárias/química , Fezes/química , Eliminação de Resíduos Líquidos , Esgotos , Poluição da Água
2.
Microb Ecol ; 61(4): 955-67, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21080161

RESUMO

Microbial food webs dominate heterotrophic food webs in large rivers with bacterial metabolism being a key component of carbon processing. Thus, analysis of bacterial population dynamics is critical to understanding patterns and mechanisms of material cycling and energy fluxes in large rivers. Within the frame of the Joint Danube Survey (JDS) 2007, the longitudinal development of the natural bacterial community in the Danube in terms of bacterial numbers, morphotype composition, and heterotrophic production of the suspended and particle-attached fractions was followed at a fine spatial resolution of approximately 30 km for the first time in such a large river along a 2,600-km stretch. Twenty-one major tributaries and branches were also included. This allowed us to investigate whether bacterial standing stock and production undergo continuous, linear changes or whether discontinuities and local processes like the merging of tributaries or the potential impact of sewage input drive the bacterial population in the Danube. The presented investigation revealed surprising continuous patterns of changes of bacterial parameters along the Danube River. Despite the presence of impoundments or hydropower plants, large municipalities, and the discharge of large tributaries, most bacterial parameters (standing stock, morphotype succession, and attached bacterial production) developed gradually, indicating that mainly broad-scale drivers and not local conditions shape and control the bacterial community in the midstream of this large river. As most important broad-scale drivers, nutrients (inorganic and organic) and changes in particle concentrations were identified. These data are also in remarkable accordance with the patterns of changes of the genetic bacterial community composition, observed during the first JDS (2001) 6 years before. In contrast, bacterial activity did not follow a continuous trend and was mainly controlled by the input of sewage from large cities in the middle section, leading to a bloom of phytoplankton. The observed patterns and the comparison between the Danube, its tributaries and other large rivers worldwide indicate that the bacterial community in rivers has a powerful indicator function for estimating the ecological status of large river ecosystems once enough information has been collected at various temporal and spatial scales.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Rios/microbiologia , Bactérias/classificação , Bactérias/genética , Rios/química
3.
Water Res ; 43(15): 3673-84, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19552934

RESUMO

The River Danube is, with 2780 km, the second longest river in Europe. Its catchment area covers 801 500 km(2), with approximately 81 million inhabitants in 19 countries. River water for anthropogenic use, transportation and recreation is of major importance in all of these countries. Microbiological contamination from faecal pollution by anthropogenic sources is considered to be a crucial problem throughout the Danube River basin. Thus, detailed knowledge on the extent and the origin of microbial pollution is essential for watershed management. The determination of faecal indicator concentrations along the Danube and its major tributaries during two whole-river surveys and 16 permanent stations allowed for the first time to draw a clear picture of the faecal pollution patterns along the whole longitudinal profile of this important international river. By including a variety of environmental variables in statistical analysis, an integrative picture of faecal pollution in the Danube River basin could be evolved. Four hot spots and six stretches of differing faecal pollution were identified, mainly linked with input from large municipalities. Significant decline of microbiological pollution was observed in the upper and lower Danube stretches over the investigation period. In contrast, a significant increase in the middle part was evident. The planned implementation of new wastewater treatment plants and advanced wastewater treatment measures according to the European Union urban wastewater directive will have a great potential to reduce microbial faecal pollution in the Danube and thus improving water quality.


Assuntos
Monitoramento Ambiental/métodos , Rios/microbiologia , Microbiologia da Água , Poluentes da Água/análise , Coleta de Dados , Enterobacteriaceae/isolamento & purificação , Escherichia coli/isolamento & purificação , Europa (Continente) , Fezes/microbiologia , Rios/química
4.
Appl Environ Microbiol ; 73(2): 421-31, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17085708

RESUMO

The Danube River is the second longest river in Europe, and its bacterial community composition has never been studied before over its entire length. In this study, bacterial community composition was determined by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified portions of the bacterial 16S rRNA gene from a total of 98 stations on the Danube River (73 stations) and its major tributaries (25 stations), covering a distance of 2,581 km. Shifts in the bacterial community composition were related to changes in environmental conditions found by comparison with physicochemical parameters (e.g., temperature and concentration of nutrients) and the concentration of chlorophyll a (Chl a). In total, 43 distinct DGGE bands were detected. Sequencing of selected bands revealed that the phylotypes were associated with typical freshwater bacteria. Apparent bacterial richness in the Danube varied between 18 and 32 bands and correlated positively with the concentration of P-PO(4) (r = 0.56) and negatively with Chl a (r = -0.52). An artificial neural network-based model explained 90% of the variation of apparent bacterial richness using the concentrations of N-NO(2) and P-PO(4) and the distance to the Black Sea as input parameters. Between the cities of Budapest and Belgrade, apparent bacterial richness was significantly lower than that of other regions of the river, and Chl a showed a pronounced peak. Generally, the bacterial community composition developed gradually; however, an abrupt and clear shift was detected in the section of the phytoplankton bloom. Large impoundments did not have a discernible effect on the bacterial community of the water column. In conclusion, the riverine bacterial community was largely influenced by intrinsic factors.


Assuntos
Bactérias/classificação , Ecossistema , Rios/microbiologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Clorofila/metabolismo , Clorofila A , DNA Bacteriano/análise , DNA Ribossômico/análise , Eletroforese em Gel de Poliacrilamida/métodos , Europa (Continente) , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Rios/química , Análise de Sequência de DNA , Temperatura
5.
Appl Environ Microbiol ; 70(12): 7396-403, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15574941

RESUMO

Wild birds are an important nonpoint source of fecal contamination of surface waters, but their contribution to fecal pollution is mostly difficult to estimate. Thus, to evaluate the relation between feces production and input of fecal indicator bacteria (FIB) into aquatic environments by wild waterfowl, we introduced a new holistic approach for evaluating the performance of FIB in six shallow saline habitats. For this, we monitored bird abundance, fecal pellet production, and the abundance of FIB concomitantly with a set of environmental variables over a 9-month period. For estimating fecal pellet production, a new protocol of fecal pellet counting was introduced, which was called fecal taxation (FTX). We could show that, over the whole range of investigated habitats, bird abundance, FTX values, and FIB abundance were highly significantly correlated and could demonstrate the good applicability of the FTX as a meaningful surrogate parameter for recent bird abundances and fecal contamination by birds in shallow aquatic ecosystems. Presumptive enterococci (ENT) were an excellent surrogate parameter of recent fecal contamination in these saline environments for samples collected at biweekly to monthly sampling intervals while presumptive Escherichia coli and fecal coliforms (FC) were often undetectable. Significant negative correlations with salinity indicated that E. coli and FC survival was hampered by osmotic stress. Statistical analyses further revealed that fecal pollution-associated parameters represented one system component independent from other environmental variables and that, besides feces production, rainfall, total suspended solids (direct), and trophy (indirect) had significant positive effects on ENT concentrations. Our holistic approach of linking bird abundance, feces production, and FIB detection with environmental variables may serve as a powerful model for application to other aquatic ecosystems.


Assuntos
Aves/fisiologia , Enterococcus/isolamento & purificação , Fezes/microbiologia , Água Doce/microbiologia , Cloreto de Sódio , Animais , Animais Selvagens/fisiologia , Áustria , Ecossistema , Enterobacteriaceae/isolamento & purificação , Enterococcus/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Escherichia coli/isolamento & purificação , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA