Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 10682-10691, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38381136

RESUMO

In this study, thin fiber composite polymer electrolyte membranes (PEMs) were prepared using short side-chain perfluorosulfonic acid (PFSA) ionomers, Aquivion, to create composite PEMs with improved proton conductivity and improved mechanical properties. PFSA thin fiber webs prepared by blow spinning and successive hot pressing were used as the porous substrate. Herein, PFSA ionomers were used for both the substrate and the matrix of the composite PEMs, and their structures, properties, and fuel cell performance were characterized. By adding the PFSA thin fiber webs to the matrix, the proton conductivity was enhanced and the mechanical properties were slightly improved. The prepared PFSA thin fiber composite PEM showed better FC performance than that of the pristine PFSA one for the high-temperature low-humidity condition in addition to the low-temperature high-humidity one. To the best of our knowledge, this is the first report on the all PFSA composite membranes containing a PFSA thin fiber framework.

2.
Nat Commun ; 15(1): 3652, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714661

RESUMO

Materials following Murray's law are of significant interest due to their unique porous structure and optimal mass transfer ability. However, it is challenging to construct such biomimetic hierarchical channels with perfectly cylindrical pores in synthetic systems following the existing theory. Achieving superior mass transport capacity revealed by Murray's law in nanostructured materials has thus far remained out of reach. We propose a Universal Murray's law applicable to a wide range of hierarchical structures, shapes and generalised transfer processes. We experimentally demonstrate optimal flow of various fluids in hierarchically planar and tubular graphene aerogel structures to validate the proposed law. By adjusting the macroscopic pores in such aerogel-based gas sensors, we also show a significantly improved sensor response dynamics. In this work, we provide a solid framework for designing synthetic Murray materials with arbitrarily shaped channels for superior mass transfer capabilities, with future implications in catalysis, sensing and energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA