RESUMO
Pathogenic variants in the JAG1 gene are a primary cause of the multi-system disorder Alagille syndrome. Although variant detection rates are high for this disease, there is uncertainty associated with the classification of missense variants that leads to reduced diagnostic yield. Consequently, up to 85% of reported JAG1 missense variants have uncertain or conflicting classifications. We generated a library of 2,832 JAG1 nucleotide variants within exons 1-7, a region with a high number of reported missense variants, and designed a high-throughput assay to measure JAG1 membrane expression, a requirement for normal function. After calibration using a set of 175 known or predicted pathogenic and benign variants included within the variant library, 486 variants were characterized as functionally abnormal (n = 277 abnormal and n = 209 likely abnormal), of which 439 (90.3%) were missense. We identified divergent membrane expression occurring at specific residues, indicating that loss of the wild-type residue itself does not drive pathogenicity, a finding supported by structural modeling data and with broad implications for clinical variant classification both for Alagille syndrome and globally across other disease genes. Of 144 uncertain variants reported in patients undergoing clinical or research testing, 27 had functionally abnormal membrane expression, and inclusion of our data resulted in the reclassification of 26 to likely pathogenic. Functional evidence augments the classification of genomic variants, reducing uncertainty and improving diagnostics. Inclusion of this repository of functional evidence during JAG1 variant reclassification will significantly affect resolution of variant pathogenicity, making a critical impact on the molecular diagnosis of Alagille syndrome.
Assuntos
Síndrome de Alagille , Proteína Jagged-1 , Mutação de Sentido Incorreto , Síndrome de Alagille/genética , Proteína Jagged-1/genética , Humanos , Éxons/genéticaRESUMO
Haploinsufficiency of JAG1 is the primary cause of Alagille syndrome (ALGS), a rare, multisystem disorder. The identification of JAG1 intronic variants outside of the canonical splice region as well as missense variants, both of which lead to uncertain associations with disease, confuses diagnostics. Strategies to determine whether these variants affect splicing include the study of patient RNA or minigene constructs, which are not always available or can be laborious to design, as well as the utilization of computational splice prediction tools. These tools, including SpliceAI and Pangolin, use algorithms to calculate the probability that a variant results in a splice alteration, expressed as a Δ score, with higher Δ scores (>0.2 on a 0-1 scale) positively correlated with aberrant splicing. We studied the consequence of 10 putative splice variants in ALGS patient samples through RNA analysis and compared this to SpliceAI and Pangolin predictions. We identified eight variants with aberrant splicing, seven of which had not been previously validated. Combining these data with non-canonical and missense splice variants reported in the literature, we identified a predictive threshold for SpliceAI and Pangolin with high sensitivity (Δ score >0.6). Moreover, we showed reduced specificity for variants with low Δ scores (<0.2), highlighting a limitation of these tools that results in the misidentification of true splice variants. These results improve genomic diagnostics for ALGS by confirming splice effects for seven variants and suggest that the integration of splice prediction tools with RNA analysis is important to ensure accurate clinical variant classifications.