Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biol ; 143(2): 333-49, 1998 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-9786946

RESUMO

The Saccharomyces cerevisiae Dnm1 protein is structurally related to dynamin, a GTPase required for membrane scission during endocytosis. Here we show that Dnm1p is essential for the maintenance of mitochondrial morphology. Disruption of the DNM1 gene causes the wild-type network of tubular mitochondrial membranes to collapse to one side of the cell but does not affect the morphology or distribution of other cytoplasmic organelles. Dnm1 proteins containing point mutations in the predicted GTP-binding domain or completely lacking the GTP-binding domain fail to rescue mitochondrial morphology defects in a dnm1 mutant and induce dominant mitochondrial morphology defects in wild-type cells. Indirect immunofluorescence reveals that Dnm1p is distributed in punctate structures at the cell cortex that colocalize with the mitochondrial compartment. These Dnm1p-containing structures remain associated with the spherical mitochondria found in an mdm10 mutant strain. In addition, a portion of Dnm1p cofractionates with mitochondrial membranes during differential sedimentation and sucrose gradient fractionation of wild-type cells. Our results demonstrate that Dnm1p is required for the cortical distribution of the mitochondrial network in yeast, a novel function for a dynamin-related protein.


Assuntos
Proteínas Fúngicas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/enzimologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Actinas/análise , Mapeamento Cromossômico , DNA Mitocondrial/análise , Dinamina I , Dinaminas , Endocitose/fisiologia , Proteínas Fúngicas/genética , GTP Fosfo-Hidrolases/genética , Deleção de Genes , Cinética , Microscopia Eletrônica , Microtúbulos/química , Microtúbulos/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais , Mutagênese Sítio-Dirigida/fisiologia , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Frações Subcelulares/química , Frações Subcelulares/enzimologia , Tubulina (Proteína)/análise , Vacúolos/ultraestrutura
2.
Mol Biol Cell ; 12(9): 2756-66, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11553714

RESUMO

Dnm1p belongs to a family of dynamin-related GTPases required to remodel different cellular membranes. In budding yeast, Dnm1p-containing complexes assemble on the cytoplasmic surface of the outer mitochondrial membrane at sites where mitochondrial tubules divide. Our previous genetic studies suggested that Dnm1p's GTPase activity was required for mitochondrial fission and that Dnm1p interacted with itself. In this study, we show that bacterially expressed Dnm1p can bind and hydrolyze GTP in vitro. Coimmunoprecipitation studies and yeast two-hybrid analysis suggest that Dnm1p oligomerizes in vivo. With the use of the yeast two-hybrid system, we show that this Dnm1p oligomerization is mediated, in part, by a C-terminal sequence related to the GTPase effector domain (GED) in dynamin. The Dnm1p interactions characterized here are similar to those reported for dynamin and dynamin-related proteins that form higher order structures in vivo, suggesting that Dnm1p assembles to form rings or collars that surround mitochondrial tubules. Based on previous findings, a K705A mutation in the Dnm1p GED is predicted to interfere with GTP hydrolysis, stabilize active Dnm1p-GTP, and stimulate a rate-limiting step in fission. Here we show that expression of the Dnm1 K705A protein in yeast enhances mitochondrial fission. Our results provide evidence that the GED region of a dynamin-related protein modulates a rate-limiting step in membrane fission.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Dinamina I , Dinaminas , Escherichia coli , Proteínas Fúngicas/genética , GTP Fosfo-Hidrolases/química , Guanosina Trifosfato/metabolismo , Hidrólise , Membranas Intracelulares/metabolismo , Cinética , Fusão de Membrana , Proteínas Mitocondriais , Dados de Sequência Molecular , Mutação , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
3.
Mol Biol Cell ; 9(4): 917-30, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9529388

RESUMO

In wild-type yeast mitochondrial inheritance occurs early in the cell cycle concomitant with bud emergence. Cells lacking the PTC1 gene initially produce buds without a mitochondrial compartment; however, these buds later receive part of the mitochondrial network from the mother cell. Thus, the loss of PTC1 causes a delay, but not a complete block, in mitochondrial transport. PTC1 encodes a serine/threonine phosphatase in the high-osmolarity glycerol response (HOG) pathway. The mitochondrial inheritance delay in the ptc1 mutant is not attributable to changes in intracellular glycerol concentrations or defects in the organization of the actin cytoskeleton. Moreover, epistasis experiments with ptc1delta and mutations in HOG pathway kinases reveal that PTC1 is not acting through the HOG pathway to control the timing of mitochondrial inheritance. Instead, PTC1 may be acting either directly or through a different signaling pathway to affect the mitochondrial transport machinery in the cell. These studies indicate that the timing of mitochondrial transport in wild-type cells is genetically controlled and provide new evidence that mitochondrial inheritance does not depend on a physical link between the mitochondrial network and the incipient bud site.


Assuntos
Mitocôndrias/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Actinas/metabolismo , Transporte Biológico , Glicerol/metabolismo , Mitocôndrias/metabolismo , Mutação , Concentração Osmolar , Pressão Osmótica , Proteína Fosfatase 2 , Proteína Fosfatase 2C , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA