RESUMO
PURPOSE: Neurovascular MRI suffers from a rapid drop in B1 + into the neck when using transmit head coils at 7 T. One solution to improving B1 + magnitude in the major feeding arteries in the neck is to use custom RF shims on parallel-transmit head coils. However, calculating such shims requires robust multichannel B1 + maps in both the head and the neck, which is challenging due to low RF penetration into the neck, limited dynamic range of multichannel B1 + mapping techniques, and B0 sensitivity. We therefore sought a robust, large-dynamic-range, parallel-transmit field mapping protocol and tested whether RF shimming can improve carotid artery B1 + magnitude in practice. METHODS: A pipeline is presented that combines B1 + mapping data acquired using circularly polarized (CP) and CP2-mode RF shims at multiple voltages. The pipeline was evaluated by comparing the predicted and measured B1 + for multiple random transmit shims, and by assessing the ability of RF shimming to increase B1 + in the carotid arteries. RESULTS: The proposed method achieved good agreement between predicted and measured B1 + in both the head and the neck. The B1 + magnitude in the carotid arteries can be increased by 43% using tailored RF shims or by 37% using universal RF shims, while also improving the RF homogeneity compared with CP mode. CONCLUSION: B1 + in the neck can be increased using RF shims calculated from multichannel B1 + maps in both the head and the neck. This can be achieved using universal phase-only RF shims, facilitating easy implementation in existing sequences.
Assuntos
Cabeça , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Cabeça/diagnóstico por imagem , Pescoço/diagnóstico por imagem , Artérias Carótidas/diagnóstico por imagem , Ondas de Rádio , Imagens de FantasmasRESUMO
PURPOSE: To acquire accurate volumetric multi-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps in under 14 s whole-brain or 23 heartbeats whole-heart for parallel transmit (pTx) applications at 7 T. THEORY AND METHODS: We evaluate the combination of three recently proposed techniques. The acquisition of multi-channel transmit array B 1 + $$ {\mathrm{B}}_1^{+} $$ maps is accelerated using transmit low rank (TxLR) with absolute B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping (Sandwich) acquired in a B 1 + $$ {\mathrm{B}}_1^{+} $$ time-interleaved acquisition of modes (B1TIAMO) fashion. Simulations using synthetic body images derived from Sim4Life were used to test the achievable acceleration for small scan matrices of 24 × 24. Next, we evaluated the method by retrospectively undersampling a fully sampled B 1 + $$ {\mathrm{B}}_1^{+} $$ library of nine subjects in the brain. Finally, Cartesian undersampled phantom and in vivo images were acquired in both the brain of three subjects (8Tx/32 receive [Rx]) and the heart of another three subjects (8Tx/8Rx) at 7 T. RESULTS: Simulation and in vivo results show that volumetric multi-channel B 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be acquired using acceleration factors of 4 in the body, reducing the acquisition time to within 23 heartbeats, which was previously not possible. In silico heart simulations demonstrated a RMS error to the fully sampled native resolution ground truth of 4.2° when combined in first-order circularly polarized mode (mean flip angle 66°) at an acceleration factor of 4. The 14 s 3D B 1 + $$ {\mathrm{B}}_1^{+} $$ maps acquired in the brain have a RMS error of 1.9° to the fully sampled (mean flip angle 86°). CONCLUSION: The proposed method is demonstrated as a fast pTx calibration technique in the brain and a promising method for pTx calibration in the body.
Assuntos
Algoritmos , Encéfalo , Coração , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Encéfalo/diagnóstico por imagem , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Adulto , Masculino , Reprodutibilidade dos TestesRESUMO
PURPOSE: To shorten the acquisition time of magnetization-prepared absolute transmit field (B1 + ) mapping known as presaturation TurboFLASH, or satTFL, to enable single breath-hold whole-heart 3D B1 + mapping. METHODS: SatTFL is modified to remove the delay between the reference and prepared images (typically 5 T1 ), with matching transmit configurations for excitation and preparation RF pulses. The new method, called Sandwich, is evaluated as a 3D sequence, measuring whole-brain and gated whole-heart B1 + maps in a single breath-hold. We evaluate the sensitivity to B1 + and T1 using numerical Bloch, extended phase graph, and Monte Carlo simulations. Phantom and in vivo images were acquired in both the brain and heart using an 8-channel transmit 7 Tesla MRI system to support the simulations. A segmented satTFL with a short readout train was used as a reference. RESULTS: The method significantly reduces acquisition times of 3D measurements from 360 s to 20 s, in the brain, while simultaneously reducing bias in the measured B1 + due to T1 and magnetization history. The mean coefficient of variation was reduced by 81% for T1 s of 0.5-3 s compared to conventional satTFL. In vivo, the reproducibility coefficient for flip angles in the range 0-130° was 4.5° for satTFL and 4.7° for our scheme, significantly smaller than for a short TR satTFL sequence, which was 12°. The 3D sequence measured B1 + maps of the whole thorax in 26 heartbeats. CONCLUSION: Our adaptations enable faster B1 + mapping, with minimal T1 sensitivity and lower sensitivity to magnetization history, enabling single breath-hold whole-heart absolute B1 + mapping.