Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373179

RESUMO

Glioblastoma (GBM) is known as the most aggressive type of malignant brain tumour, with an extremely poor prognosis of approximately 12 months following standard-of-care treatment with surgical resection, radiotherapy (RT), and temozolomide treatment. Novel RT-drug combinations are urgently needed to improve patient outcomes. Gold nanoparticles (GNPs) have demonstrated significant preclinical potential as radiosensitizers due to their unique physicochemical properties and their ability to pass the blood-brain barrier. The modification of GNP surface coatings with poly(ethylene) glycol (PEG) confers several therapeutic advantages including immune avoidance and improved cellular localisation. This study aimed to characterise both the radiosensitizing and immunomodulatory properties of differentially PEGylated GNPs in GBM cells in vitro. Two GBM cell lines were used, U-87 MG and U-251 MG. The radiobiological response was evaluated by clonogenic assay, immunofluorescent staining of 53BP1 foci, and flow cytometry. Changes in the cytokine expression levels were quantified by cytokine arrays. PEGylation improved the radiobiological efficacy, with double-strand break induction being identified as an underlying mechanism. PEGylated GNPs also caused the greatest boost in RT immunogenicity, with radiosensitization correlating with a greater upregulation of inflammatory cytokines. These findings demonstrate the radiosensitizing and immunostimulatory potential of ID11 and ID12 as candidates for RT-drug combination in future GBM preclinical investigations.


Assuntos
Glioblastoma , Nanopartículas Metálicas , Humanos , Glioblastoma/metabolismo , Citocinas/uso terapêutico , Ouro/química , Nanopartículas Metálicas/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico
2.
Phys Imaging Radiat Oncol ; 31: 100615, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39157293

RESUMO

Background and purpose: Radiomics analysis extracts quantitative data (features) from medical images. These features could potentially reflect biological characteristics and act as imaging biomarkers within precision medicine. However, there is a lack of cross-comparison and validation of radiomics outputs which is paramount for clinical implementation. In this study, we compared radiomics outputs across two computed tomography (CT)-based preclinical scanners. Materials and methods: Cone beam CT (CBCT) and µCT scans were acquired using different preclinical CT imaging platforms. The reproducibility of radiomics features on each scanner was assessed using a phantom across imaging energies (40 & 60 kVp) and segmentation volumes (44-238 mm3). Retrospective mouse scans were used to compare feature reliability across varying tissue densities (lung, heart, bone), scanners and after voxel size harmonisation. Reliable features had an intraclass correlation coefficient (ICC) > 0.8. Results: First order and GLCM features were the most reliable on both scanners across different volumes. There was an inverse relationship between tissue density and feature reliability, with the highest number of features in lung (CBCT=580, µCT=734) and lowest in bone (CBCT=110, µCT=560). Comparable features for lung and heart tissues increased when voxel sizes were harmonised. We have identified tissue-specific preclinical radiomics signatures in mice for the lung (133), heart (35), and bone (15). Conclusions: Preclinical CBCT and µCT scans can be used for radiomics analysis to support the development of meaningful radiomics signatures. This study demonstrates the importance of standardisation and emphasises the need for multi-centre studies.

3.
Radiother Oncol ; 192: 110106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253201

RESUMO

BACKGROUND AND PURPOSE: Radiomics is a rapidly evolving area of research that uses medical images to develop prognostic and predictive imaging biomarkers. In this study, we aimed to identify radiomics features correlated with longitudinal biomarkers in preclinical models of acute inflammatory and late fibrotic phenotypes following irradiation. MATERIALS AND METHODS: Female C3H/HeN and C57BL6 mice were irradiated with 20 Gy targeting the upper lobe of the right lung under cone-beam computed tomography (CBCT) image-guidance. Blood samples and lung tissue were collected at baseline, weeks 1, 10 & 30 to assess changes in serum cytokines and histological biomarkers. The right lung was segmented on longitudinal CBCT scans using ITK-SNAP. Unfiltered and filtered (wavelet) radiomics features (n = 842) were extracted using PyRadiomics. Longitudinal changes were assessed by delta analysis and principal component analysis (PCA) was used to remove redundancy and identify clustering. Prediction of acute (week 1) and late responses (weeks 20 & 30) was performed through deep learning using the Random Forest Classifier (RFC) model. RESULTS: Radiomics features were identified that correlated with inflammatory and fibrotic phenotypes. Predictive features for fibrosis were detected from PCA at 10 weeks yet overt tissue density was not detectable until 30 weeks. RFC prediction models trained on 5 features were created for inflammation (AUC 0.88), early-detection of fibrosis (AUC 0.79) and established fibrosis (AUC 0.96). CONCLUSIONS: This study demonstrates the application of deep learning radiomics to establish predictive models of acute and late lung injury. This approach supports the wider application of radiomics as a non-invasive tool for detection of radiation-induced lung complications.


Assuntos
Lesão Pulmonar , Neoplasias Pulmonares , Lesões por Radiação , Feminino , Animais , Camundongos , Neoplasias Pulmonares/patologia , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Radiômica , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos C3H , Pulmão/diagnóstico por imagem , Pulmão/patologia , Lesões por Radiação/patologia , Biomarcadores , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA