Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(2): 287-302, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35105987

RESUMO

The volume-regulated anion channel (VRAC) is formed by LRRC8 proteins and is responsible for the regulatory volume decrease (RVD) after hypotonic cell swelling. Besides chloride, VRAC transports other molecules, for example, immunomodulatory cyclic dinucleotides (CDNs) including 2'3'cGAMP. Here, we identify LRRC8C as a critical component of VRAC in T cells, where its deletion abolishes VRAC currents and RVD. T cells of Lrrc8c-/- mice have increased cell cycle progression, proliferation, survival, Ca2+ influx and cytokine production-a phenotype associated with downmodulation of p53 signaling. Mechanistically, LRRC8C mediates the transport of 2'3'cGAMP in T cells, resulting in STING and p53 activation. Inhibition of STING recapitulates the phenotype of LRRC8C-deficient T cells, whereas overexpression of p53 inhibits their enhanced T cell function. Lrrc8c-/- mice have exacerbated T cell-dependent immune responses, including immunity to influenza A virus infection and experimental autoimmune encephalomyelitis. Our results identify cGAMP uptake through LRRC8C and STING-p53 signaling as a new inhibitory signaling pathway in T cells and adaptive immunity.


Assuntos
Ânions/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Linfócitos T/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Cálcio/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais/fisiologia
2.
Immunity ; 55(3): 405-422.e11, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35180378

RESUMO

Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-seq). Inducible tracing of Cx3cr1+ hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s, and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1+ progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-seq analyses of differentiating HSCs and Cx3cr1+ progenitors identified progressive stages of pDC development including Cx3cr1+ Ly-6D+ pro-pDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s.


Assuntos
Linfócitos B , Células Dendríticas , Animais , Contagem de Células , Coreia , Células-Tronco Hematopoéticas , Camundongos
3.
Nature ; 592(7853): 290-295, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658712

RESUMO

The lipid chemoattractant sphingosine 1-phosphate (S1P) guides cells out of tissues, where the concentration of S1P is relatively low, into circulatory fluids, where the concentration of S1P is high1. For example, S1P directs the exit of T cells from lymph nodes, where T cells are initially activated, into lymph, from which T cells reach the blood and ultimately inflamed tissues1. T cells follow S1P gradients primarily using S1P receptor 1 (ref. 1). Recent studies have described how S1P gradients are established at steady state, but little is known about the distribution of S1P in disease or about how changing levels of S1P may affect immune responses. Here we show that the concentration of S1P increases in lymph nodes during an immune response. We found that haematopoietic cells, including inflammatory monocytes, were an important source of this S1P, which was an unexpected finding as endothelial cells provide S1P to lymph1. Inflammatory monocytes required the early activation marker CD69 to supply this S1P, in part because the expression of CD69 was associated with reduced levels of S1pr5 (which encodes S1P receptor 5). CD69 acted as a 'stand-your-ground' signal, keeping immune cells at a site of inflammation by regulating both the receptors and the gradients of S1P. Finally, increased levels of S1P prolonged the residence time of T cells in the lymph nodes and exacerbated the severity of experimental autoimmune encephalomyelitis in mice. This finding suggests that residence time in the lymph nodes might regulate the differentiation of T cells, and points to new uses of drugs that target S1P signalling.


Assuntos
Linfonodos/imunologia , Linfonodos/metabolismo , Lisofosfolipídeos/metabolismo , Monócitos/metabolismo , Esfingosina/análogos & derivados , Linfócitos T/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Linfonodos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Linfócitos T/citologia
4.
Development ; 150(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37787076

RESUMO

Reciprocal interactions between non-myocytes and cardiomyocytes regulate cardiac growth and differentiation. Here, we report that the transcription factor Ebf1 is highly expressed in non-myocytes and potently regulates heart development. Ebf1-deficient hearts display myocardial hypercellularity and reduced cardiomyocyte size, ventricular conduction system hypoplasia, and conduction system disease. Growth abnormalities in Ebf1 knockout hearts are observed as early as embryonic day 13.5. Transcriptional profiling of Ebf1-deficient embryonic cardiac non-myocytes demonstrates dysregulation of Polycomb repressive complex 2 targets, and ATAC-Seq reveals altered chromatin accessibility near many of these same genes. Gene set enrichment analysis of differentially expressed genes in cardiomyocytes isolated from E13.5 hearts of wild-type and mutant mice reveals significant enrichment of MYC targets and, consistent with this finding, we observe increased abundance of MYC in mutant hearts. EBF1-deficient non-myocytes, but not wild-type non-myocytes, are sufficient to induce excessive accumulation of MYC in co-cultured wild-type cardiomyocytes. Finally, we demonstrate that BMP signaling induces Ebf1 expression in embryonic heart cultures and controls a gene program enriched in EBF1 targets. These data reveal a previously unreported non-cell-autonomous pathway controlling cardiac growth and differentiation.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Camundongos , Diferenciação Celular/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo
5.
Blood ; 142(5): 460-476, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37267505

RESUMO

The chromosome 9p21 locus comprises several tumor suppressor genes including MTAP, CDKN2A, and CDKN2B, and its homo- or heterozygous deletion is associated with reduced survival in multiple cancer types. We report that mice with germ line monoallelic deletion or induced biallelic deletion of the 9p21-syntenic locus (9p21s) developed a fatal myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN)-like disease associated with aberrant trabecular bone formation and/or fibrosis in the bone marrow (BM). Reciprocal BM transfers and conditional targeting of 9p21s suggested that the disease originates in the BM stroma. Single-cell analysis of 9p21s-deficient BM stroma revealed the expansion of chondrocyte and osteogenic precursors, reflected in increased osteogenic differentiation in vitro. It also showed reduced expression of factors maintaining hematopoietic stem/progenitor cells, including Cxcl12. Accordingly, 9p21s-deficient mice showed reduced levels of circulating Cxcl12 and concomitant upregulation of the profibrotic chemokine Cxcl13 and the osteogenesis- and fibrosis-related multifunctional glycoprotein osteopontin/Spp1. Our study highlights the potential of mutations in the BM microenvironment to drive MDS/MPN-like disease.


Assuntos
Medula Óssea , Osteogênese , Camundongos , Animais , Medula Óssea/patologia , Células-Tronco Hematopoéticas/metabolismo , Genes Supressores de Tumor , Diferenciação Celular
6.
PLoS Biol ; 20(9): e3001754, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36099266

RESUMO

Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Humanos , Peptidil Dipeptidase A/metabolismo , Receptores Virais , SARS-CoV-2
7.
Circulation ; 148(21): 1705-1722, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37772400

RESUMO

BACKGROUND: Conotruncal defects due to developmental abnormalities of the outflow tract (OFT) are an important cause of cyanotic congenital heart disease. Dysregulation of transcriptional programs tuned by NKX2-5 (NK2 homeobox 5), GATA6 (GATA binding protein 6), and TBX1 (T-box transcription factor 1) have been implicated in abnormal OFT morphogenesis. However, there remains no consensus on how these transcriptional programs function in a unified gene regulatory network within the OFT. METHODS: We generated mice harboring a 226-nucleotide deletion of a highly conserved cardiac enhancer containing 2 GATA-binding sites located ≈9.4 kb upstream of the transcription start site of Nkx2-5 (Nkx2-5∆enh) using CRISPR-Cas9 gene editing and assessed phenotypes. Cardiac defects in Nkx2-5∆enh/∆enh mice were structurally characterized using histology and scanning electron microscopy, and physiologically assessed using electrocardiography, echocardiography, and optical mapping. Transcriptome analyses were performed using RNA sequencing and single-cell RNA sequencing data sets. Endogenous GATA6 interaction with and activity on the NKX2-5 enhancer was studied using chromatin immunoprecipitation sequencing and transposase-accessible chromatin sequencing in human induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Nkx2-5∆enh/∆enh mice recapitulated cyanotic conotruncal defects seen in patients with NKX2-5, GATA6, and TBX1 mutations. Nkx2-5∆enh/∆enh mice also exhibited defects in right Purkinje fiber network formation, resulting in right bundle-branch block. Enhancer deletion reduced embryonic Nkx2-5 expression selectively in the right ventricle and OFT of mutant hearts, indicating that enhancer activity is localized to the anterior second heart field. Transcriptional profiling of the mutant OFT revealed downregulation of important genes involved in OFT rotation and septation, such as Tbx1, Pitx2, and Sema3c. Endogenous GATA6 interacted with the highly conserved enhancer in human induced pluripotent stem cell-derived cardiomyocytes and in wild-type mouse hearts. We found critical dose dependency of cardiac enhancer accessibility on GATA6 gene dosage in human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: Our results using human and mouse models reveal an essential gene regulatory network of the OFT that requires an anterior second heart field enhancer to link GATA6 with NKX2-5-dependent rotation and septation gene programs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição , Humanos , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Redes Reguladoras de Genes , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Camundongos Transgênicos , Células-Tronco Pluripotentes Induzidas/metabolismo , Coração , Miócitos Cardíacos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
8.
Am J Respir Cell Mol Biol ; 68(5): 523-536, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36693140

RESUMO

Normal lung development critically depends on HH (Hedgehog) and PDGF (platelet-derived growth factor) signaling, which coordinate mesenchymal differentiation and proliferation. PDGF signaling is required for postnatal alveolar septum formation by myofibroblasts. Recently, we demonstrated a requirement for HH in postnatal lung development involving alveolar myofibroblast differentiation. Given shared features of HH signaling and PDGF signaling and their impact on this key cell type, we sought to clarify their relationship during murine postnatal lung development. Timed experiments revealed that HH inhibition phenocopies the key lung myofibroblast phenotypes of Pdgfa (platelet-derived growth factor subunit A) and Pdgfra (platelet-derived growth factor receptor alpha) knockouts during secondary alveolar septation. Using a dual signaling reporter, Gli1lZ;PdgfraEGFP, we show that HH and PDGF pathway intermediates are concurrently expressed during alveolar septal myofibroblast accumulation, suggesting pathway convergence in the generation of lung myofibroblasts. Consistent with this hypothesis, HH inhibition reduces Pdgfra expression and diminishes the number of Pdgfra-positive and Pdgfra-lineage cells in postnatal lungs. Bulk RNA sequencing data of Pdgfra-expressing cells from Postnatal Day 8 (P8) lungs show that HH inhibition alters the expression not only of well-established HH targets but also of several putative PDGF target genes. This, together with the presence of Gli-binding sites in PDGF target genes, suggests HH input into PDGF signaling. We identified these HH/PDGF targets in several postnatal lung mesenchymal cell populations, including myofibroblasts, using single-cell transcriptomic analysis. Collectively, our data indicate that HH signaling and PDGF signaling intersect to support myofibroblast/fibroblast function during secondary alveolar septum formation. Moreover, they provide a molecular foundation relevant to perinatal lung diseases associated with impaired alveolarization.


Assuntos
Ouriços , Pulmão , Gravidez , Feminino , Animais , Camundongos , Ouriços/metabolismo , Pulmão/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo
9.
BMC Genomics ; 24(1): 569, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37749493

RESUMO

BACKGROUND: Developing genomic resources for a diverse range of species is an important step towards understanding the mechanisms underlying complex traits. Specifically, organisms that exhibit unique and accessible phenotypes-of-interest allow researchers to address questions that may be ill-suited to traditional model organisms. We sequenced the genome and transcriptome of Alston's singing mouse (Scotinomys teguina), an emerging model for social cognition and vocal communication. In addition to producing advertisement songs used for mate attraction and male-male competition, these rodents are diurnal, live at high-altitudes, and are obligate insectivores, providing opportunities to explore diverse physiological, ecological, and evolutionary questions. RESULTS: Using PromethION, Illumina, and PacBio sequencing, we produced an annotated genome and transcriptome, which were validated using gene expression and functional enrichment analyses. To assess the usefulness of our assemblies, we performed single nuclei sequencing on cells of the orofacial motor cortex, a brain region implicated in song coordination, identifying 12 cell types. CONCLUSIONS: These resources will provide the opportunity to identify the molecular basis of complex traits in singing mice as well as to contribute data that can be used for large-scale comparative analyses.


Assuntos
Evolução Biológica , Genômica , Masculino , Animais , Camundongos , Herança Multifatorial , Fenótipo , Reprodução
11.
J Neurosci ; 41(12): 2601-2614, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33536202

RESUMO

A fundamental, evolutionarily conserved biological mechanism required for long-term memory formation is rapid induction of gene transcription upon learning in relevant brain areas. For episodic types of memories, two regions undergoing this transcription are the dorsal hippocampus (dHC) and prelimbic (PL) cortex. Whether and to what extent these regions regulate similar or distinct transcriptomic profiles upon learning remain to be understood. Here, we used RNA sequencing in the dHC and PL cortex of male rats to profile their transcriptomes in untrained conditions (baseline) and at 1 h and 6 d after inhibitory avoidance learning. We found that, of 33,713 transcripts, >14,000 were significantly expressed at baseline in both regions and ∼3000 were selectively enriched in each region. Gene Ontology biological pathway analyses indicated that commonly expressed pathways included synapse organization, regulation of membrane potential, and vesicle localization. The enriched pathways in the dHC were gliogenesis, axon development, and lipid modification, while in the PL cortex included vesicle localization and synaptic vesicle cycle. At 1 h after learning, 135 transcripts changed significantly in the dHC and 478 in the PL cortex; of these, only 34 were shared. Biological pathways most significantly regulated by learning in the dHC were protein dephosphorylation, glycogen and glucan metabolism, while in the PL cortex were axon development and axonogenesis. The transcriptome profiles returned to baseline by 6 d after training. Thus, a significant portion of dHC and PL cortex transcriptomic profiles is divergent, and their regulation upon learning is largely distinct and transient.SIGNIFICANCE STATEMENT Long-term episodic memory formation requires gene transcription in several brain regions, including the hippocampus and PFC. The comprehensive profiles of the dynamic mRNA changes that occur in these regions following learning are not well understood. Here, we performed RNA sequencing in the dorsal hippocampus and prelimbic cortex, a PFC subregion, at baseline, 1 h, and 6 d after episodic learning in rats. We found that, at baseline, dorsal hippocampus and prelimbic cortex differentially express a significant portion of mRNAs. Moreover, learning produces a transient regulation of region-specific profiles of mRNA, indicating that unique biological programs in different brain regions underlie memory formation.


Assuntos
Aprendizagem da Esquiva/fisiologia , Redes Reguladoras de Genes/fisiologia , Hipocampo/fisiologia , Memória Episódica , Córtex Pré-Frontal/fisiologia , Transcriptoma/fisiologia , Animais , Medo/fisiologia , Medo/psicologia , Masculino , Ratos , Ratos Long-Evans
12.
Circulation ; 143(8): 805-820, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225722

RESUMO

BACKGROUND: Elevated intracardiac pressure attributable to heart failure induces electrical and structural remodeling in the left atrium (LA) that begets atrial myopathy and arrhythmias. The underlying molecular pathways that drive atrial remodeling during cardiac pressure overload are poorly defined. The purpose of this study is to characterize the response of the ETV1 (ETS translocation variant 1) signaling axis in the LA during cardiac pressure overload in humans and mouse models and explore the role of ETV1 in atrial electrical and structural remodeling. METHODS: We performed gene expression profiling in 265 left atrial samples from patients who underwent cardiac surgery. Comparative gene expression profiling was performed between 2 murine models of cardiac pressure overload, transverse aortic constriction banding and angiotensin II infusion, and a genetic model of Etv1 cardiomyocyte-selective knockout (Etv1f/fMlc2aCre/+). RESULTS: Using the Cleveland Clinic biobank of human LA specimens, we found that ETV1 expression is decreased in patients with reduced ejection fraction. Consistent with its role as an important mediator of the NRG1 (Neuregulin 1) signaling pathway and activator of rapid conduction gene programming, we identified a direct correlation between ETV1 expression level and NRG1, ERBB4, SCN5A, and GJA5 levels in human LA samples. In a similar fashion to patients with heart failure, we showed that left atrial ETV1 expression is downregulated at the RNA and protein levels in murine pressure overload models. Comparative analysis of LA RNA sequencing datasets from transverse aortic constriction and angiotensin II-treated mice showed a high Pearson correlation, reflecting a highly ordered process by which the LA undergoes electrical and structural remodeling. Cardiac pressure overload produced a consistent downregulation of ErbB4, Etv1, Scn5a, and Gja5 and upregulation of profibrotic gene programming, which includes Tgfbr1/2, Igf1, and numerous collagen genes. Etv1f/fMlc2aCre/+ mice displayed atrial conduction disease and arrhythmias. Correspondingly, the LA from Etv1f/fMlc2aCre/+ mice showed downregulation of rapid conduction genes and upregulation of profibrotic gene programming, whereas analysis of a gain-of-function ETV1 RNA sequencing dataset from neonatal rat ventricular myocytes transduced with Etv1 showed reciprocal changes. CONCLUSIONS: ETV1 is downregulated in the LA during cardiac pressure overload, contributing to both electrical and structural remodeling.


Assuntos
Arritmias Cardíacas/patologia , Proteínas de Ligação a DNA/metabolismo , Átrios do Coração/metabolismo , Fatores de Transcrição/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiotensina II/administração & dosagem , Angiotensina II/efeitos adversos , Animais , Arritmias Cardíacas/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neuregulina-1/genética , Neuregulina-1/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Remodelação Ventricular , Adulto Jovem
13.
J Am Soc Nephrol ; 32(8): 1987-2004, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34135081

RESUMO

BACKGROUND: Peripheral vascular diseases may induce chronic ischemia and cellular injury distal to the arterial obstruction. Cellular senescence involves proliferation arrest in response to stress, which can damage neighboring cells. Renal artery stenosis (RAS) induces stenotic-kidney dysfunction and injury, but whether these arise from cellular senescenceand their temporal pattern remain unknown. METHODS: Chronic renal ischemia was induced in transgenic INK-ATTAC and wild type C57BL/6 mice by unilateral RAS, and kidney function (in vivo micro-MRI) and tissue damage were assessed. Mouse healthy and stenotic kidneys were analyzed using unbiased single-cell RNA-sequencing. To demonstrate translational relevance, cellular senescence was studied in human stenotic kidneys. RESULTS: Using intraperitoneal AP20187 injections starting 1, 2, or 4 weeks after RAS, selective clearance of cells highly expressing p16Ink4a attenuated cellular senescence and improved stenotic-kidney function; however, starting treatment immediately after RAS induction was unsuccessful. Broader clearance of senescent cells, using the oral senolytic combination dasatinib and quercetin, in C57BL/6 RAS mice was more effective in clearing cells positive for p21 (Cdkn1a) and alleviating renal dysfunction and damage. Unbiased, single-cell RNA sequencing in freshly dissociated cells from healthy and stenotic mouse kidneys identified stenotic-kidney epithelial cells undergoing both mesenchymal transition and senescence. As in mice, injured human stenotic kidneys exhibited cellular senescence, suggesting this process is conserved. CONCLUSIONS: Maladaptive tubular cell senescence, involving upregulated p16 (Cdkn2a), p19 (Cdkn2d), and p21 (Cdkn1a) expression, is associated with renal dysfunction and injury in chronic ischemia. These findings support development of senolytic strategies to delay chronic ischemic renal injury.


Assuntos
Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Isquemia/fisiopatologia , Rim/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Quinases Ativadas por p21/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Doença Crônica , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p19/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Dasatinibe/farmacologia , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/fisiologia , Transição Epitelial-Mesenquimal , Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Humanos , Isquemia/etiologia , Rim/irrigação sanguínea , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteopontina/genética , Inibidores de Proteínas Quinases/farmacologia , Obstrução da Artéria Renal/complicações , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Análise de Sequência de RNA , Análise de Célula Única , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Regulação para Cima , Quinases Ativadas por p21/genética
14.
EMBO Rep ; 17(6): 887-900, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27118388

RESUMO

Antisense RNAs regulate the transcription and translation of the corresponding sense genes. Here, we report that an antisense RNA, AS-RBM15, is transcribed in the opposite direction within exon 1 of RBM15 RBM15 is a regulator of megakaryocyte (MK) differentiation and is also involved in a chromosome translocation t(1;22) in acute megakaryocytic leukemia. MK terminal differentiation is enhanced by up-regulation of AS-RBM15 expression and attenuated by AS-RBM15 knockdown. At the molecular level, AS-RBM15 enhances RBM15 protein translation in a CAP-dependent manner. The region of the antisense AS-RBM15 RNA, which overlaps with the 5'UTR of RBM15, is sufficient for the up-regulation of RBM15 protein translation. In addition, we find that transcription of both RBM15 and AS-RBM15 is activated by the transcription factor RUNX1 and repressed by RUNX1-ETO, a leukemic fusion protein. Therefore, AS-RBM15 is a regulator of megakaryocyte differentiation and may play a regulatory role in leukemogenesis.


Assuntos
Diferenciação Celular/genética , Megacariócitos/citologia , Megacariócitos/metabolismo , RNA Antissenso , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Biossíntese de Proteínas , Transporte Proteico , Deleção de Sequência , Transcrição Gênica
15.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39026763

RESUMO

Bacterial directional migration plays a significant role in bacterial adaptation. However, the regulation of this process, particularly in young biofilms, remains unclear. Here, we demonstrated the critical role of extracellular RNA as part of the Universal Receptive System in bacterial directional migration using a multidisciplinary approach, including bacterial culture, biochemistry, and genetics. We found that the destruction or inactivation of extracellular RNA with RNase or RNA-specific antibodies in the presence of the chemoattractant triggered the formation of bacterial "runner cells¼ in what we call a "panic state" capable of directional migration. These cells quickly migrated even on the surface of 1.5% agar and formed evolved colonies that were transcriptionally and biochemically different from the ancestral cells. We have also shown that cell-free DNA from blood plasma can act as a potent bacterial chemoattractant. Our data revealed a previously unknown role of bacterial extracellular RNA in the regulation of bacterial migration and have shown that its destruction or inhibition triggered the directional migration of developing and mature biofilms towards the chemoattractant.

16.
Nat Commun ; 15(1): 7091, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154080

RESUMO

The integration of extrinsic signaling with cell-intrinsic transcription factors can direct progenitor cells to differentiate into distinct cell fates. In the developing Drosophila eye, differentiation of photoreceptors R1-R7 requires EGFR signaling mediated by the transcription factor Pointed, and our single-cell RNA-Seq analysis shows that the same photoreceptors require the eye-specific transcription factor Glass. We find that ectopic expression of Glass and activation of EGFR signaling synergistically induce neuronal gene expression in the wing disc in a Pointed-dependent manner. Targeted DamID reveals that Glass and Pointed share many binding sites in the genome of developing photoreceptors. Comparison with transcriptomic data shows that Pointed and Glass induce photoreceptor differentiation through intermediate transcription factors, including the redundant homologs Scratch and Scrape, as well as directly activating neuronal effector genes. Our data reveal synergistic activation of a multi-layered transcriptional network as the mechanism by which EGFR signaling induces neuronal identity in Glass-expressing cells.


Assuntos
Proteínas de Ligação a DNA , Proteínas de Drosophila , Drosophila melanogaster , Receptores ErbB , Regulação da Expressão Gênica no Desenvolvimento , Neurônios , Transdução de Sinais , Fatores de Transcrição , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Diferenciação Celular , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/citologia , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Discos Imaginais/metabolismo , Discos Imaginais/citologia , Proteínas do Tecido Nervoso , Proteínas Proto-Oncogênicas , Receptores de Peptídeos de Invertebrados
17.
Sci Immunol ; 9(94): eadi1023, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608038

RESUMO

The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.


Assuntos
Coreia , Diferenciação Celular , Citocinas , Células Dendríticas
18.
Med ; 5(8): 1016-1029.e4, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38776915

RESUMO

BACKGROUND: Xenotransplantation of genetically engineered porcine organs has the potential to address the challenge of organ donor shortage. Two cases of porcine-to-human kidney xenotransplantation were performed, yet the physiological effects on the xenografts and the recipients' immune responses remain largely uncharacterized. METHODS: We performed single-cell RNA sequencing (scRNA-seq) and longitudinal RNA-seq analyses of the porcine kidneys to dissect xenotransplantation-associated cellular dynamics and xenograft-recipient interactions. We additionally performed longitudinal scRNA-seq of the peripheral blood mononuclear cells (PBMCs) to detect recipient immune responses across time. FINDINGS: Although no hyperacute rejection signals were detected, scRNA-seq analyses of the xenografts found evidence of endothelial cell and immune response activation, indicating early signs of antibody-mediated rejection. Tracing the cells' species origin, we found human immune cell infiltration in both xenografts. Human transcripts in the longitudinal bulk RNA-seq revealed that human immune cell infiltration and the activation of interferon-gamma-induced chemokine expression occurred by 12 and 48 h post-xenotransplantation, respectively. Concordantly, longitudinal scRNA-seq of PBMCs also revealed two phases of the recipients' immune responses at 12 and 48-53 h. Lastly, we observed global expression signatures of xenotransplantation-associated kidney tissue damage in the xenografts. Surprisingly, we detected a rapid increase of proliferative cells in both xenografts, indicating the activation of the porcine tissue repair program. CONCLUSIONS: Longitudinal and single-cell transcriptomic analyses of porcine kidneys and the recipient's PBMCs revealed time-resolved cellular dynamics of xenograft-recipient interactions during xenotransplantation. These cues can be leveraged for designing gene edits and immunosuppression regimens to optimize xenotransplantation outcomes. FUNDING: This work was supported by NIH RM1HG009491 and DP5OD033430.


Assuntos
Rejeição de Enxerto , Transplante de Rim , Transplante Heterólogo , Animais , Transplante Heterólogo/efeitos adversos , Transplante Heterólogo/métodos , Humanos , Suínos , Rejeição de Enxerto/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Análise de Célula Única , Xenoenxertos/imunologia , RNA-Seq , Análise de Sequência de RNA , Rim/imunologia , Rim/metabolismo
19.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717172

RESUMO

Aging is the consequence of intra- and extracellular events that promote cellular senescence. Dyskeratosis congenita (DC) is an example of a premature aging disorder caused by underlying telomere/telomerase-related mutations. Cells from these patients offer an opportunity to study telomere-related aging and senescence. Our previous work has found that telomere shortening stimulates DNA damage responses (DDRs) and increases reactive oxygen species (ROS), thereby promoting entry into senescence. This work also found that telomere elongation via TERT expression, the catalytic component of the telomere-elongating enzyme telomerase, or p53 shRNA could decrease ROS by disrupting this telomere-DDR-ROS pathway. To further characterize this pathway, we performed a CRISPR/Cas9 knockout screen to identify genes that extend life span in DC cells. Of the cellular clones isolated due to increased life span, 34% had a guide RNA (gRNA) targeting CEBPB, while gRNAs targeting WSB1, MED28, and p73 were observed multiple times. CEBPB is a transcription factor associated with activation of proinflammatory response genes suggesting that inflammation may be present in DC cells. The inflammatory response was investigated using RNA sequencing to compare DC and control cells. Expression of inflammatory genes was found to be significantly elevated (P < 0.0001) in addition to a key subset of these inflammation-related genes [IL1B, IL6, IL8, IL12A, CXCL1 (GROa), CXCL2 (GROb), and CXCL5]. which are regulated by CEBPB. Exogenous TERT expression led to downregulation of RNA/protein CEBPB expression and the inflammatory response genes suggesting a telomere length-dependent mechanism to regulate CEBPB. Furthermore, unlike exogenous TERT and p53 shRNA, CEBPB shRNA did not significantly decrease ROS suggesting that CEBPB's contribution in DC cells' senescence is ROS independent. Our findings demonstrate a key role for CEBPB in engaging senescence by mobilizing an inflammatory response within DC cells.


Assuntos
Disceratose Congênita , Telomerase , Humanos , Espécies Reativas de Oxigênio/metabolismo , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética , Mutação , Telômero/genética , Telômero/metabolismo , RNA Interferente Pequeno/metabolismo , Fibroblastos/metabolismo , Inflamação/genética , Complexo Mediador/genética , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
20.
Circ Arrhythm Electrophysiol ; 16(1): e011466, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36595632

RESUMO

BACKGROUND: Patients with chronic kidney disease (CKD) are at increased risk of developing cardiac arrhythmogenesis and sudden cardiac death; however, the basis for this association is incompletely known. METHODS: Here, using murine models of CKD, we examined interactions between kidney disease progression and structural, electrophysiological, and molecular cardiac remodeling. RESULTS: C57BL/6 mice with adenine supplemented in their diet developed progressive CKD. Electrocardiographically, CKD mice developed significant QT prolongation and episodes of bradycardia. Optical mapping of isolated-perfused hearts using voltage-sensitive dyes revealed significant prolongation of action potential duration with no change in epicardial conduction velocity. Patch-clamp studies of isolated ventricular cardiomyocytes revealed changes in sodium and potassium currents consistent with action potential duration prolongation. Global transcriptional profiling identified dysregulated expression of cellular stress response proteins RBM3 (RNA-binding motif protein 3) and CIRP (cold-inducible RNA-binding protein) that may underlay the ion channel remodeling. Unexpectedly, we found that female sex is a protective factor in the progression of CKD and its cardiac sequelae. CONCLUSIONS: Our data provide novel insights into the association between CKD and pathologic proarrhythmic cardiac remodeling. Cardiac cellular stress response pathways represent potential targets for pharmacologic intervention for CKD-induced heart rhythm disorders.


Assuntos
Insuficiência Renal Crônica , Remodelação Ventricular , Feminino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Modelos Animais de Doenças , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA