Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 758: 110076, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942108

RESUMO

Arsenic, an environmental pollutant and poisonous metalloid, has adverse effects on different body organs, including the kidneys. Betaine is a natural nutrient that has many beneficial health effects. This research was conducted to examine the impact of betaine on nephrotoxicity caused by inorganic arsenic (NaAsO2) in mice. Mice were separated into following groups: control, NaAsO2 (50 ppm), NaAsO2 (50 ppm) + betaine (500 mg/kg), and betaine (500 mg/kg). Mice were received NaAsO2 via drinking water for 8 consecutive weeks and betaine was given to the animals via gavage once daily in the 7th and 8th weeks of the study. Upon completion of the study, the mice were euthanized and samples of serum and kidney were obtained for further evaluations. Administration of NaAsO2 increased the levels of blood urea nitrogen and creatinine in the serum. It enhanced the amounts of renal malondialdehyde and decreased the total thiol levels, as well as the activity of antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase). Furthermore, it enhanced the levels of renal inflammatory indicators (tumor necrosis factor-alpha and nitric oxide). Western blot results exhibited an increase in the protein expression of nuclear factor kappa B (NF-κB), and phosphorylated NF-κB in NaAsO2-treated mice. Histopathological results also confirmed kidney damage caused by NaAsO2. However, treatment with betaine improved NaAsO2-related kidney injuries in mice. The results of this work indicated that betaine can attenuate kidney damage caused by NaAsO2 by inhibiting oxidative stress and inflammation.


Assuntos
Betaína , Inflamação , Rim , Estresse Oxidativo , Animais , Betaína/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Masculino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Arsênio/toxicidade , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo
2.
J Assist Reprod Genet ; 41(7): 1881-1891, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38568464

RESUMO

PURPOSE: In this study, the effect of thymoquinone (TQ) on CP-induced spermatogenesis defects in mice has been investigated. METHODS: Sperm parameters, serum testosterone concentration, histology, Bax/Bcl-2 ratio, and expression of autophagy-related biomarkers have been assessed. Total antioxidant capacity (TAC), total oxidant status (TOS), and oxidative stress index (OSI) in testicular tissue were examined for the evaluation of oxidative stress levels. RESULTS: CP has induced histological changes and significantly increased the Bax/Bcl-2 ratio, decreased testosterone concentration, testicular weight, and sperm quality. CP induced oxidative stress by elevating OSI in the testicular tissue (p < 0.05). Expression of the autophagy-inducer genes (ATG7, ATG5, and Beclin-1) and ratio of LC3B/LC3A proteins were significantly decreased, while mTOR expression was increased in the CP group. TQ pretreatment dose-dependently decreased the Bax/Bcl-2 ratio and mTOR gene expression while increasing the expression of ATG5 and ATG7 genes, LC3B/LC3A ratio, and Beclin-1 proteins. TQ could also dose-dependently reverse the histology, testosterone level, and sperm quality of the CP-intoxicated mice. CONCLUSIONS: These findings show that TQ pretreatment can enhance sperm production by inducing autophagy and reducing apoptosis and oxidative stress in the CP-intoxicated mouse testicles.


Assuntos
Apoptose , Autofagia , Benzoquinonas , Cisplatino , Estresse Oxidativo , Espermatozoides , Testículo , Masculino , Animais , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Autofagia/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Espermatozoides/patologia , Testosterona/sangue , Espermatogênese/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo
3.
Biochem Biophys Res Commun ; 664: 69-76, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141640

RESUMO

BACKGROUND: The presence of cancer stem cells (CSCs) is a major cause of resistance to cancer therapy and recurrence. Triple-negative breast cancer (TNBC) is a subtype that responds poorly to therapy, making it a significant global health issue. Quercetin (QC) has been shown to affect CSC viability, but its low bioavailability limits its clinical use. This study aims to increase the effectiveness of QC in inhibiting CSC generation by using solid lipid nanoparticles (SLNs) in MDA-MB231 cells. MATERIALS AND METHODS: After treating MCF-7 and MDA-MB231 cells with 18.9 µM and 13.4 µM of QC and QC-SLN for 48 h, respectively, cell viability, migration, sphere formation, protein expression of ß-catenin, p-Smad 2 and 3, and gene expression of EMT and CSC markers were evaluated. RESULTS: The QC-SLN with particle size of 154 nm, zeta potential of -27.7 mV, and encapsulation efficacy of 99.6% was found to be the most effective. Compared to QC, QC-SLN significantly reduced cell viability, migration, sphere formation, protein expression of ß-catenin and p-Smad 2 and 3, and gene expression of CD44, zinc finger E-box binding homeobox 1 (ZEB1), vimentin, while increasing the gene expression of E-cadherin. CONCLUSIONS: Our findings demonstrate that SLNs improve the cytotoxic effect of QC in MDA-MB231 cells by increasing its bioavailability and inhibiting epithelial-mesenchymal transition (EMT), thereby effectively inhibiting CSC generation. Therefore, SLNs could be a promising new treatment for TNBC, but more in vivo studies are needed to confirm their efficacy.


Assuntos
Neoplasias de Mama Triplo Negativas , beta Catenina , Humanos , beta Catenina/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Fosforilação , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Transição Epitelial-Mesenquimal , Movimento Celular , Proteína Smad3/metabolismo , Proteína Smad2/metabolismo
4.
Mol Biol Rep ; 50(11): 9417-9430, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831347

RESUMO

BACKGROUND: Quercetin (QC) is a naturally occurring flavonoid found in abundance in fruits and vegetables. Its anti-cancer and anti-inflammatory properties have been previously demonstrated, but its low bioavailability hampers its clinical use. Triple-negative breast cancer is a subtype of breast cancer with a poor response to chemotherapy. This study investigates the anti-cancer effects of quercetin-solid lipid nanoparticles (QC-SLN) on the triple-negative breast cancer cell line MDA-MB231. MATERIALS AND METHODS: MCF-7 and MDA-MB231 cells were treated with 18.9 µM of QC and QC-SLN for 48 h. Cell viability, apoptosis, colony formation assay, and the anti-angiogenic effects of the treatment were evaluated. RESULTS: QC-SLN displayed optimal properties (particle size of 154 nm, zeta potential of -27.7 mV, encapsulation efficiency of 99.6%, and drug loading of 1.81%) and exhibited sustained release of QC over 72 h. Compared to the QC group, the QC-SLN group showed a significant decrease in cell viability, colony formation, angiogenesis, and a substantial increase in apoptosis through the modulation of Bax and Bcl-2 at both gene and protein levels. The augmentation in the proportion of cleaved-to-pro caspases 3 and 9, as well as poly (ADP-ribose) polymerase (PARP), under the influence of QC-SLN, was conspicuously observed in both cancer cell lines. CONCLUSIONS: This study showcases quercetin-solid lipid nanoparticles (QC-SLN) as a promising therapy for triple-negative breast cancer. The optimized QC-SLN formulation improved physicochemical properties and sustained quercetin release, resulting in reduced cell viability, colony formation, angiogenesis, and increased apoptosis in the MDA-MB231 cell line. These effects were driven by modulating Bax and Bcl-2 expression, activating caspases 3 and 9, and poly (ADP-ribose) polymerase (PARP). Further in vivo studies are needed to confirm QC-SLN's efficacy and safety.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/metabolismo , Quercetina , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína X Associada a bcl-2 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ribose , Linhagem Celular Tumoral , Nanopartículas/química , Proliferação de Células , Caspases , Antineoplásicos/química , Apoptose
5.
J Biochem Mol Toxicol ; 37(7): e23364, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183931

RESUMO

Increasing air pollution is associated with serious human health problems. P-coumaric acid (PC) is a herbal phenolic compound that exhibits beneficial pharmacological potentials. Here, the protective effect of PC on liver injury induced by air pollution was examined. Thirty-two adult male Wistar rats (200-250 g) were divided randomly into four groups (n = 8). The groups were; Control (rats received DMSO and then exposed to clean air), PC (rats received PC and then exposed to clean air), DMSO + Dust (rats received DMSO and then exposed to dust), and PC + Dust (the animals received PC and then exposed to dust). The clean air, DMSO, PC, and dust were administrated 3 days a week for 6 consecutive weeks. The rats were anesthetized and their blood samples and liver sections were taken to conduct molecular, biomedical, and histopathological tests. Dust exposure increased the liver enzymes, bilirubin, triglyceride, cholesterol, and the production of liver malondialdehyde, and decreased in liver total anti-oxidant capacity and serum high-density lipoprotein. It also increased the mRNA expression of inflammatory-related cytokines, decreased the mRNA expression of SIRT-1, decreased the expression levels of miR-20b5p, and MEG3 while increased the expression levels of miR-34a, and HOTAIR. Dust exposure also increased the liver content of three cytokines TNF-α, NF-κB, HMGB-1, and ATG-7 proteins. PC enhanced liver function against adverse effects of dust through recovering almost all the studied variables. Exposure to dust damaged the liver through induction of oxidative stress, inflammation, and autophagy. PC protected the liver against dust-induced cytotoxicity.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Ratos , Masculino , Animais , Material Particulado/toxicidade , Ratos Wistar , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Fígado/metabolismo , Poeira , Citocinas/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Estresse Oxidativo
6.
Pestic Biochem Physiol ; 192: 105391, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105618

RESUMO

The use of arsenic in arsenic-based pesticides has been common in many countries in the past and today. There is considerable evidence linking arsenic exposure to hepatotoxicity and diabetes. Destructive phenomena such as hepatic oxidative stress and inflammation can interfere with glucose uptake and insulin function. In the present study, the antioxidant, anti-inflammatory, and molecular mechanism of citicoline against sodium arsenite-induced hepatotoxicity and glucose intolerance were investigated in mice. Citicoline improved glucose tolerance impaired by sodium arsenite. Citicoline increased the hepatic activity of catalase, superoxide dismutase, and glutathione peroxidase enzymes. Moreover, we found that citicoline prevents an increase in the levels of thiobarbituric acid reactive substances. Citicoline reduced levels of caspase 3, tumor necrosis factor-alpha, and interleukin 6 in sodium arsenite intoxicated groups. It was shown that citicoline increased the expression of arsenite methyltransferase, vesicle-associated membrane protein 2, peroxisome proliferator-activated receptor gamma, and sirtuin 3 to combat sodium arsenite toxicity. Citicoline reduced glucose intolerance, which was disrupted by sodium arsenite, by affecting the pancreatic and extra-pancreatic pathways involved in insulin production, secretion, and action. Based on our results, citicoline can be considered a modulating agent against arsenic-induced hepatotoxicity and hyperglycemia. Considering the relationship between arsenic exposure and the occurrence of side effects such as liver toxicity and diabetes, it is necessary to monitor and awareness of arsenic residues from sources such as drinking water.


Assuntos
Arsênio , Doença Hepática Induzida por Substâncias e Drogas , Diabetes Mellitus , Intolerância à Glucose , Insulinas , Sirtuína 3 , Camundongos , Animais , Arsênio/toxicidade , Arsênio/metabolismo , Sirtuína 3/efeitos adversos , Sirtuína 3/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteína 2 Associada à Membrana da Vesícula/farmacologia , PPAR gama/metabolismo , Citidina Difosfato Colina/efeitos adversos , Citidina Difosfato Colina/metabolismo , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/tratamento farmacológico , Diabetes Mellitus/induzido quimicamente , Antioxidantes/farmacologia , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Insulinas/efeitos adversos , Insulinas/metabolismo , Metiltransferases
7.
Br J Nutr ; 127(6): 837-846, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33902761

RESUMO

Obesity is often introduced as one of the metabolic disorders caused by imbalance between energy consumption and metabolisable energy intake. Experts in the field considered obesity as one of the robust risk factors for the lifestyle-associated diseases. The present research examined interventional effects of marine chitosan (CS), swimming training (ST) and combination of CS and ST (CS + ST) in the mice fed with high-fat diets (HFD). In this study, sample size was considered more than three in groups. Forty mice were randomly divided into five groups (n 8 per group) including control group (received the standard diet), HFD group (received high-fat food with 20 % fat), HFD + CS group (treated with high-fat food with 5 % CS), HFD + ST group (treated with HFD and ST) and HFD + CS + ST group (treated with high-fat food with 5 % CS and ST). After 8 weeks, the blood glucose, oxidative stress (OS) and lipid profile were measured. The results showed that CS + ST group has more effects in the control of body weight with the increased concentration of HDL-cholesterol, OS inhibition via enhancing the body antioxidant capacity in comparison with the ST or CS alone in HFD-fed mice. Moreover, lipid profile was improved in CS + ST-treated mice compared with HFD-treated mice, and OS inhibition correlated with the greater activities of the antioxidant enzyme enhances the lipid oxidation, cholesterol and fatty acid homoeostasis. The results suggested that a dietary intervention with a combined ST and CS can be a feasible supplementary for human prevention of obesity.


Assuntos
Quitosana , Dieta Hiperlipídica , Animais , Camundongos , Antioxidantes/metabolismo , Quitosana/metabolismo , Quitosana/farmacologia , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Estresse Oxidativo , Natação
8.
Mol Biol Rep ; 49(9): 8537-8545, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35767106

RESUMO

BACKGROUND: Among the flavonoids, Myricetin (MCN) has negligible side effects and anti-cancer properties. However, the therapeutic potential of MCN has been limited mainly by its low bioavailability. Nanocarriers improve the bioavailability and stability of flavonoids. The toxic effects of MCN loaded in solid lipid nanoparticles (MCN-SLNs) on the HT-29 human colorectal cancer cells were investigated in this study. METHODS AND RESULTS: HT-29 cells were exposed to the 30 µmol MCN or MCN-SLNs for 24 h. Colony formation, cell viability, apoptosis, and expression of the Bax, Bcl-2, and AIF (apoptosis-inducing factor) have been investigated. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation were also measured. The MCN-SLNs with appropriate characteristics and a slow sustained MCN release until 48 h made. MCN-SLNs could diminish colony numbers and survival of the HT-29 cells. The apoptosis index of MCN-SLNs-treated cells significantly increased compared to the free MCN (p < 0.001). The expression of Bax and AIF were elevated (p < 0.01 and p < 0.001, respectively) while Bcl-2 expression was decreased in MCN-SLNs treatment (p < 0.05). Moreover, MCN-SLNs significantly enhanced the ROS formation and reduced MMP compared to the free MCN-treated cells (p < 0.01). CONCLUSIONS: The SLN formulation of MCN can effectively induce colon cancer cell death by raising ROS formation and activating the apoptosis process.


Assuntos
Neoplasias Colorretais , Nanopartículas , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacologia , Células HT29 , Humanos , Lipossomos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
9.
Drug Chem Toxicol ; 45(2): 491-498, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31986916

RESUMO

Hepatotoxicity is an adverse side effect of methotrexate (MTX) administration for the treatment of different malignancies, psoriasis, and rheumatoid arthritis (RA). Naringenin (NAR) is a citrus flavone with multiple pharmacological characteristics. In this study, we aimed to investigate the protective effects of NAR on MTX-induced hepatotoxicity in rats. For this purpose, 32 Wistar rats were randomly divided into four experimental groups as group 1 Control, group 2 NAR (50 mg/kg/d, o.p.), group 3 MTX (20 mg/kg/d, i.p.), group 4 NAR + MTX. NAR was administrated for 10 consecutive days and MTX was injected on the ninth day. The results indicated that MTX significantly increased malondialdehyde (MDA), NO, TNF-α, and IL-6 levels in the liver. On the other hand, administration of MTX reduced the GSH content, as well as CAT, SOD, and GPx levels. NAR administration remarkably improved MTX-induced alteration of biochemical biomarkers. Our findings were confirmed by the histopathological examination of the liver. Based on our findings, NAR may inhibit MTX-induced hepatotoxicity through scavenging reactive free radicals and inducing anti-inflammatory effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Metotrexato , Animais , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Flavanonas , Metotrexato/toxicidade , Estresse Oxidativo , Ratos , Ratos Wistar
10.
J Wound Care ; 31(Sup10): S16-S27, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240871

RESUMO

OBJECTIVE: For a long time, natural compounds have been used to accelerate wound healing. In this study, the topical effects of ammoniacum gum extract on wound healing were investigated in white male rats. METHOD: Following skin wound induction in aseptic conditions, 48 Wistar rats were divided into six equal groups; phenytoin cream 1% (standard), untreated (control), Eucerin (control), and 5%, 10% and 20% ointments of Dorema ammoniacum gum extract (treatment groups). All experimental groups received topical drugs daily for 14 days. The percentage of wound healing, hydroxyproline content, histological parameters, and growth factors (endothelial growth factor (EGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-α) were measured in experimental groups. RESULTS: The areas of the wounds in the treatment groups were significantly decreased compared with the wound areas of control groups at 5, 7 and 10 days after wounding. On the 12th day, the wounds in the treatment groups were completely healed. Hydroxyproline contents were significantly increased in the treatment groups compared with the control groups (p<0.001). In histological evaluation, the re-epithelialisation, increasing thickness of the epithelial layer, granulation tissue and neovascularisation parameters in the treatment groups showed significant increases compared with the control groups. Also, serum levels of TGF-ß, PDGF, EGF and VEGF in the treatment groups were significantly increased compared to the control groups. CONCLUSION: The topical application of ammoniacum gum extract significantly increases the percentage of wound healing in rats and reduces the time of wound closure.


Assuntos
Fenitoína , Fator A de Crescimento do Endotélio Vascular , Animais , Fatores de Crescimento Endotelial/farmacologia , Fator de Crescimento Epidérmico , Hidroxiprolina/farmacologia , Masculino , Pomadas , Fenitoína/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta , Fatores de Crescimento Transformadores/farmacologia , Cicatrização
11.
Cytogenet Genome Res ; 161(5): 227-235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34311462

RESUMO

Inactivation of tumor suppressor genes, such as RAP1GAP, by hypermethylation of their regulatory region can give rise to thyroid tumors. The aim of this study was to investigate the expression of the RAP1GAP gene and the DNA methylation patterns of its CpG74a, CpG74b, and CpG24 in an Iranian population with differentiated thyroid cancer (DTC). In this study, 160 individuals who underwent thyroidectomy in the Tehran Erfan Hospital between 2018 and 2020 were selected. DNA methylation patterns of selected CpG islands (CpG74a, CpG74b, and CpG24) were determined using methylation-specific PCR. The mRNA expression and protein level of -RAP1GAP were also evaluated. SW1736 and B-CPAP cells were treated with 5-aza-2'-deoxycytidine (5-Aza) to demethylate these regions. The hypermethylation rates of CpG74a and CpG24 in DTC samples were significantly higher than in the control. The mRNA expression and protein level of -RAP1GAP were significantly decreased in the DTC group. In the DTC group, hypermethylation in CpG74a was correlated with decreasing RAP1GAP expression (R2: 0.34; p = 0.043). CpG74a with a specificity of 86.4% has significant prediction power to distinguish between DTC and normal thyroid tissues. Additionally, hypermethylation of CpG74a was significantly associated with higher tumor stages (stage III-IV: 77%; stage I-II: 23%; p = 0.012). Increasing expression of RAP1GAP after demethylation with 15 µM of 5-Aza was observed in both cell lines. These results indicate that DNA hypermethylation in CpG74a can be considered as an epigenetic biomarker in DTC.


Assuntos
Adenocarcinoma Folicular/genética , Carcinoma Papilar/genética , Metilação de DNA , DNA de Neoplasias/genética , Epigênese Genética , Proteínas Ativadoras de GTPase/genética , Neoplasias da Glândula Tireoide/genética , Adenocarcinoma Folicular/diagnóstico , Adenocarcinoma Folicular/patologia , Adenocarcinoma Folicular/cirurgia , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/patologia , Carcinoma Papilar/cirurgia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Ilhas de CpG/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Decitabina/farmacologia , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia/métodos
12.
Mol Biol Rep ; 48(5): 4153-4162, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34032977

RESUMO

Valproic acid (VPA) is known as a common drug in seizure and bipolar disorders treatment. Hepatotoxicity is the most important complication of VPA. Taurine (Tau), an amino acid, has antioxidant effects. The present research was conducted to evaluate the protective mechanisms of Tau on VPA-induced liver injury, especially focusing on the necroptosis signaling pathway. The sixty-four male NMRI mice were divided into eight groups with eight animals per each. The experiment groups pretreated with Tau (250, 500, 1000 mg/kg) and necrostatine-1 (Nec-1, 1.8 mg/kg) and then VPA (500 mg/kg) was administered for 14 consecutive days. The extent of VPA-induced hepatotoxicity was confirmed by elevated ALP (alkaline phosphatase), AST (aspartate aminotransferase), ALT (alanine aminotransferase) levels, and histological changes as steatosis, accumulation of erythrocytes, and inflammation. Additionally, VPA significantly induced oxidative stress in the hepatic tissue by increasing ROS (reactive oxygen species) production and lipid peroxidation level along with decreasing GSH (glutathione). Hepatic TNF-α (tumor necrosis factor) level, mRNA and protein expression of RIPK1 (receptor-interacting protein kinase 1), RIPK3, and MLKL (mixed lineage kinase domain-like pseudokinase) were upregulated. Also, the phosphorylation of MLKL and RIPK3 increased in the VPA group. Tau could effectively reverse these events. Our data suggest which necroptosis has a key role in the toxicity of VPA through TNF-α-mediated RIPK1/RIPK3/MLKL signaling and oxidative stress. Our findings suggest that Tau protects the liver tissue against VPA toxicity via inhibiting necroptosis signaling pathway mediated by RIPK1/RIPK3/MLKL and suppressing oxidative stress, and apoptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Necroptose/efeitos dos fármacos , Substâncias Protetoras/administração & dosagem , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taurina/administração & dosagem , Ácido Valproico/efeitos da radiação , Animais , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Imidazóis/administração & dosagem , Indóis/administração & dosagem , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ácido Valproico/administração & dosagem
13.
Andrologia ; 53(8): e14146, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34165216

RESUMO

It has been revealed that di(2-ethylhexyl)phthalate (DEHP) has toxic impacts on the male reproductive system. Taurine (TAU) is an amino acid with antioxidant property and beneficial impacts on the male reproductive system. In this study, protective impacts of Taurine (TAU) on DEHP-induced Leydig TM3 cell toxicity were investigated. The cells exposed to DEHP (0.8 µmol) or TAU (100 mg/ml) for 24 hr. Cell viability (MTT assay), apoptosis, oxidative stress and testosterone level were examined. DEHP could significantly decrease the cell viability percentage, reduce testosterone level, increase apoptosis, elevate Bax/ Bcl-2 ratio and enhance caspase-3 and -9 activity in the TM3 cells. Additionally, DEHP significantly elevated malondialdehyde contents and reactive oxygen species levels. It also augmented superoxide dismutase and catalase activity in the Leydig cells. Co-treatment of DEHP with TAU increased viability and testosterone level, while oxidative stress and apoptosis significantly reduced. TAU could decrease Bax/Bcl-2 ratio and caspase-3 and -9 activity in the DEHP-intoxicated cells. Our results have clearly shown that TAU protects TM3 cells against oxidative stress and apoptosis induced by DEHP.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Dietilexilftalato/toxicidade , Humanos , Células Intersticiais do Testículo , Masculino , Estresse Oxidativo , Taurina/farmacologia
14.
Andrologia ; 53(3): e13988, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33476054

RESUMO

Previous studies have demonstrated the toxic impacts of zinc oxide nanoparticles (ZO-NPs) on male reproductive cells. The effect of quercetin (QCT) on ZO-NPs-induced mouse Sertoli cell (TM4 cell line) toxicity and its underlying mechanisms were investigated in this study. The TM4 cells were exposed to ZO-NPs or QCT in different groups for 24 hr. The TM4 cells pre-treated with 3MA (3-Methyladenine, an autophagy inhibitor) to evaluate the autophagy role of QCT and ZO-NPs in the TM4 cells. ZO-NPs significantly reduced the viability percentage of the TM4 cells. The apoptosis percentage and Bax/Bcl-2 ratio of the ZO-NPs group were significantly increased, while the expression of autophagy-related genes was considerably downregulated. ZO-NPs also induced oxidative stress in the TM4 cells through increasing malondialdehyde contents and reactive oxygen species levels (ROS) and reducing antioxidant factors including superoxide dismutase, catalase, glutathione and glutathione peroxidase. In QCT + ZO-NPs group, these events were considerably reversed. 3MA could significantly decrease the cell viability of TM4 cells exposed to the QCT and ZO-NPs in comparison with the untreated 3MA groups. According to these results, the protective effects of QCT on ZO-NPs-exposed TM4 cells are related to inducing autophagy, prevention apoptosis and suppressing oxidative stress.


Assuntos
Nanopartículas , Óxido de Zinco , Animais , Apoptose , Autofagia , Masculino , Camundongos , Nanopartículas/toxicidade , Estresse Oxidativo , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células de Sertoli/metabolismo , Óxido de Zinco/toxicidade
15.
Metab Brain Dis ; 35(2): 401-412, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31853830

RESUMO

Stroke is devastating and a leading cause of morbidity and mortality worldwide. Cerebral ischemia-reperfusion and its subsequent reactive hyperemia lead to neuronal damage in the hippocampus and cognitive decline. Chrysin (5, 7-dihydroxyflavone) is a well-known member of the flavonoid family with antioxidant and neuroprotective effects. Therefore, in the present study, the aim was to investigate whether chrysin will be able to recover the brain function caused by ischemia-reperfusion (I/R) in rats. Adult male Wistar rats (250-300 g) were randomly divided into five groups: and submitted to cerebral I/R or a sham surgery after three-weeks of pretreatment with chrysin (CH; 10, 30 and 100 mg/kg; P.O.) and/or normal saline containing %5 DMSO. Subsequently, sensorimotor scores, cognition, local cerebral blood flow, extracellular single unit, and histological parameters were evaluated following I/R. Hippocampus was used to evaluate biomarkers including: oxidative stress parameters and prostaglandin E2 (PGE2) using ELISA kits. Data showed that pretreatment with chrysin significantly improved sensorimotor signs, passive avoidance memory, and attenuated reactive hyperemia, and increased the average number of spikes/bin (p < 0.001). Furthermore, chrysin pre-treatment significantly decreased the levels of MDA, NO, and PGE2 (p < 0. 001), while increased the levels of GPX and the number of surviving cells in the hippocampal CA1 region (p < 0.01, p < 0.001; respectively). This study demonstrates that chrysin may have beneficial effects in the treatment of cognitive impairment and help recover the brain dysfunction induced by I/R.


Assuntos
Transtornos Cerebrovasculares/prevenção & controle , Flavonoides/uso terapêutico , Hiperemia/prevenção & controle , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/metabolismo , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Hiperemia/metabolismo , Masculino , Transtornos da Memória/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar
16.
Parasitol Res ; 119(7): 2177-2187, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32377911

RESUMO

Liver fibrosis is a dynamic process that occurs in response to chronic liver disease resulting from factors such as chronic infections, autoimmune reactions, allergic responses, toxins, radiation, and infectious agents. Among the infectious agents, multicellular parasites cause chronic inflammation and fibrosis. Twenty-five patients with different stages of cystic echinococcosis (CE) were enrolled in the study. The expression of ACTA2, COL3A1, IFN-γ, MMP2, MMP9, TGF-ß1, and TNF-α genes was determined by qRT-PCR in healthy and fibrotic liver tissue of the CE patients. TGF-ß1 expression was evaluated by immunohistochemistry, and histology was conducted to assess the development of liver fibrosis. Expression of MMP9, ACTA2, COL3A1, and MMP2 was found significantly higher in the fibrotic tissue compared to healthy tissue. We observed a significant correlation between TGF-ß1 and TNF-α gene expressions and liver fibrosis. The mRNA level of IFN-γ was lower in the fibrotic than in the healthy hepatic tissue. Immunohistochemistry analysis revealed TGF-ß1 upregulation in the fibrotic tissue. Histology showed inflammation and fibrosis to be significantly higher in the fibrotic tissue. The findings of this study suggest that Echinococcus granulosussensu lato can promotes fibrosis through the overexpression of TGF-ß1, MMP9, ACTA2, COL3A1, and MMP2. The downregulation of IFN-γ mRNA in fibrotic samples is probably due to the increased production of TGF-ß1 and the suppression of potential anti-fibrotic role of IFN-γ during advanced liver injury caused by E. granulosussensu lato.


Assuntos
Equinococose/patologia , Cirrose Hepática/patologia , Adolescente , Adulto , Animais , Criança , Equinococose/genética , Equinococose/metabolismo , Equinococose/parasitologia , Echinococcus granulosus/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/parasitologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Adulto Jovem
17.
Drug Chem Toxicol ; 43(1): 85-95, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30264589

RESUMO

Bisphenol A (BPA), which is an applied endocrine disrupting chemical in industry for producing epoxy resins and polycarbonate plastics and naringin, is an active flavanone glycoside of grapefruit and many citrus fruits. The present study evaluated the protective effect of naringin against cardiotoxicity induced by BPA. Male Wistar rats were divided into six groups. Control group received oral olive oil; and BPA group orally were administrated 50 mg/kg of BPA for 30 d consecutively to induce toxicity. 40, 80, and 160 mg/kg of naringin were orally administered for 30 consecutive, along with BPA. Naringin group orally received 160 mg/kg of naringin for 30 d consecutively. Animals were sacrificed and their biochemical, histological, and oxidative stress parameters were measured 24 h after the last treatment. Heart injury was induced by BPA as an evidence with a significant increase in levels of aspartate aminotransferase, lactate dehydrogenase, creatine kinase-MB, triglyceride, lipid peroxidation, and a significant decrease in levels of glutathione, superoxide dismutase, catalase, and glutathione peroxidase and triggered myocardial disorganization, myofibrillar loss, congestion of red blood cells, and the inflammation. However, there were not any changes in the total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, and alanine aminotransferase. Moreover, our results indicated that administering 80 and 160 mg/kg of naringin significantly altered all examined endpoints that were induced by BPA. Both concentrations of 80 and 160 mg/kg of naringin were more effective than 40 mg/kg. These findings indicated that naringin had a protective effect against cardiotoxicity induced by BPA through lipid-lowering properties, antioxidant activity, and suppressed lipid peroxidation.


Assuntos
Compostos Benzidrílicos/toxicidade , Cardiotoxicidade/prevenção & controle , Flavanonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenóis/toxicidade , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Cardiotoxicidade/etiologia , Relação Dose-Resposta a Droga , Disruptores Endócrinos/toxicidade , Flavanonas/administração & dosagem , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
18.
Medicina (Kaunas) ; 56(12)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322127

RESUMO

Cancer is a group of diseases that include uncontrolled cell division and cell migration, as well as resistance to cell death [...].


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Preparações Farmacêuticas , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Humanos , Lipídeos
19.
Medicina (Kaunas) ; 55(4)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013662

RESUMO

: Background and objectives: Previous studies have shown anti-tumor activity of quercetin (QT). However, the low bioavailability of QT has restricted its use. This study aimed to assess the toxic effect of QT encapsulated in solid lipid nanoparticles (QT-SLNs) on the growth of MCF-7 human breast cancer cells. Materials and Methods: MCF-7 and MCF-10A (non-tumorigenic cell line) cell lines treated with 25 µmol/mL of QT or QT-SLNs for 48 h. Cell viability, colony formation, oxidative stress, and apoptosis were evaluated to determine the toxic effects of the QT-SLNs. Results: The QT-SLNs with appropriate characteristics (particle size of 85.5 nm, a zeta potential of -22.5 and encapsulation efficiency of 97.6%) were prepared. The QT-SLNs showed sustained QT release until 48 h. Cytotoxicity assessments indicated that QT-SLNs inhibited MCF-7 cells growth with a low IC50 (50% inhibitory concentration) value, compared to the free QT. QT-SLNs induced a significant decrease in the viability and proliferation of MCF-7 cells, compared to the free QT. QT-SLN significantly increased reactive oxygen species (ROS) level and MDA contents and significantly decreased antioxidant enzyme activity in the MCF-7 cells. Following QT-SLNs treatment, the expression of the Bcl-2 protein significantly decreased, whereas Bx expression showed a significant increase in comparison with free QT-treated cells. Furthermore, The QT-SLNs significantly increased apoptotic and necrotic indexes in MCF-7 cells. Viability, proliferation, oxidative stress and apoptosis of MCF-10A cells were not affected by QT or QT-SLNs. Conclusion: According to the results of this study, SLN significantly enhanced the toxic effect of QT against human breast cancer cells.


Assuntos
Antioxidantes/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanocápsulas , Nanomedicina/métodos , Quercetina/uso terapêutico , Apoptose/efeitos dos fármacos , Catalase/análise , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Malondialdeído/análise , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/análise , Superóxido Dismutase/análise , Resultado do Tratamento
20.
Can J Physiol Pharmacol ; 96(3): 275-280, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28846851

RESUMO

Alzheimer's disease (AD) is associated with decreased serum levels of thyroid hormones (THs), increased levels of thyroid-stimulating hormone (TSH), and decreased protein expression of brain-derived neurotrophic factor (BDNF) and reelin in the hippocampus. In this study, we have evaluated the effect of subcutaneous administration of levothyroxine (L-T4) on levels of THs and TSH as well as protein expression of BDNF and reelin in AD rats. To make an animal model of AD, amyloid-beta peptide (Aß) plus ibotenic acid were infused intrahippocampally, and rats were treated with L-T4 and (or) saline for 10 days. The levels of THs and TSH were measured by ELISA kits. Protein synthesis was detected by Western blotting method. Results have been shown that serum level of THs, BDNF, and reelin protein expression in the hippocampus were significantly decreased (P < 0.001) in AD animals and elevated significantly in AD rats treated with L-T4 (P < 0.01). Data showed that TSH level significantly decreased in AD rats treated with L-T4 (P < 0.05). These findings indicated that L-T4 increased BDNF and reelin protein expression by regulation of serum THs and TSH level in Aß-induced AD rats.


Assuntos
Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Hipófise/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Glândula Tireoide/efeitos dos fármacos , Tiroxina/farmacologia , Doença de Alzheimer/sangue , Doença de Alzheimer/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Hipófise/metabolismo , Ratos , Ratos Wistar , Proteína Reelina , Glândula Tireoide/metabolismo , Hormônios Tireóideos/sangue , Tireotropina/sangue , Tiroxina/administração & dosagem , Tiroxina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA