Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
2.
Biochem Pharmacol ; 225: 116277, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740222

RESUMO

Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.


Assuntos
Autofagia , Senescência Celular , Neoplasias , Humanos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Animais , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fatores de Risco , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
3.
Br J Pharmacol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952183

RESUMO

BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) results from pulmonary vasculopathy, initially leading to a compensatory right ventricular (RV) hypertrophy, and eventually to RV failure. Hypoxia can trigger both pulmonary vasculopathy and RV failure. Therefore, we tested if myo-inositol trispyrophosphate (ITPP), which facilitates oxygen dissociation from haemoglobin, can relieve pulmonary vasculopathy and RV hypoxia, and eventually prevent RV failure and mortality in the rat model of monocrotaline-induced PH. EXPERIMENTAL APPROACH: Rats were injected with monocrotaline (PH) or saline (control) and received ITPP or placebo for 5 weeks. Serial echocardiograms were obtained to monitor the disease, pressure-volume loops were recorded and evaluated, myocardial pO2 was measured using a fluorescent probe, and histological and molecular analyses were conducted at the conclusion of the experiment. KEY RESULTS AND CONCLUSIONS: ITPP reduced PH-related mortality. It had no effect on progressive increase in pulmonary vascular resistance, yet significantly relieved intramyocardial RV hypoxia, which was associated with improvement of RV function and reduction of RV wall stress. ITPP also tended to prevent increased hypoxia inducible factor-1α expression in RV cardiac myocytes but did not affect RV capillary density. IMPLICATIONS: Our study suggests that strategies aimed at increasing oxygen delivery to hypoxic RV in PH could potentially be used as adjuncts to other therapies that target pulmonary vessels, thus increasing the ability of the RV to withstand increased afterload and reducing mortality. ITPP may be one such potential therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA