Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 13(47): 8903-8909, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28951907

RESUMO

When coated with microscale hydrophobic particles, macroscopic liquid droplets can become non-wetting liquid marbles that exhibit an array of fascinating solid-like properties. Specifically, the force required to uniaxially compress liquid marbles depends on their volume, but it is unclear if the particle coating plays a role. In contrast, the failure of marbles upon compression does depend on the particle coating, but the conditions for failure do not appear to change with marble volume. Here, we experimentally study the elastic deformation and failure of liquid marbles and, by applying a doubly truncated oblate spheroid model to quantify their surface area, explore the role of marble volume and particle composition. First, we find that the work required to compress liquid marbles agrees with the product of the core fluid surface tension and the change in the marble surface area, validating that the elastic mechanics of liquid marbles is independent of the particle coating. Next, we study marble failure by measuring their ductility as quantified by the maximum fractional increase in marble surface area prior to rupture. Not only does marble ductility depend on the particle coating, but it also depends on marble volume with smaller marbles being more ductile. This size effect is attributed to an interaction between marble curvature and particle rafts held together by interparticle forces. These results illuminate new avenues to tailor the rupture of liquid marbles for applications spanning smart fluid handling and pollution mitigation.

2.
Nano Lett ; 16(9): 5836-41, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27509768

RESUMO

We demonstrate the continuous and reversible tuning of the optical band gap of suspended monolayer MoS2 membranes by as much as 500 meV by applying very large biaxial strains. By using chemical vapor deposition (CVD) to grow crystals that are highly impermeable to gas, we are able to apply a pressure difference across suspended membranes to induce biaxial strains. We observe the effect of strain on the energy and intensity of the peaks in the photoluminescence (PL) spectrum and find a linear tuning rate of the optical band gap of 99 meV/%. This method is then used to study the PL spectra of bilayer and trilayer devices under strain and to find the shift rates and Grüneisen parameters of two Raman modes in monolayer MoS2. Finally, we use this result to show that we can apply biaxial strains as large as 5.6% across micron-sized areas and report evidence for the strain tuning of higher level optical transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA