RESUMO
Body mass index (BMI) is an indicator of obesity, and recent neuroimaging studies have demonstrated that inter-individual variations in BMI are associated with altered brain structure and function. However, the mechanism underlying the alteration of structure-function correspondence according to BMI is under-investigated. In this study, we studied structural and functional connectivity derived from diffusion MRI tractography and inter-regional correlations of functional MRI time series, respectively. We combined the structural and functional connectivity information using the Riemannian optimization approach. First, the low-dimensional principal eigenvectors (i.e., gradients) of the structural connectivity were generated by applying diffusion map embedding with varying diffusion times. A transformation was identified so that the structural and functional embeddings share the same coordinate system, and subsequently, the functional connectivity matrix was simulated. Then, we generated gradients from the simulated functional connectivity matrix. We found the most apparent cortical hierarchical organization differentiating between low-level sensory and higher-order transmodal regions in the middle of the diffusion time, indicating that the hierarchical organization of the brain may reflect the intermediate mechanisms of mono- and polysynaptic communications. Associations between the functional gradients and BMI were strongest when the hierarchical structure was the most evident. Moreover, the gradient-BMI association map was related to the microstructural features, and the findings indicated that the BMI-related structure-function coupling was significantly associated with brain microstructure, particularly in higher-order transmodal areas. Finally, transcriptomic association analysis revealed the potential biological underpinnings specifying gene enrichment in the striatum, hypothalamus, and cortical cells. Our findings provide evidence that structure-function correspondence is strongly coupled with BMI when hierarchical organization is the most apparent and that the associations are related to the multiscale properties of the brain, leading to an advanced understanding of the neural mechanisms related to BMI.
Assuntos
Encéfalo , Imagem de Tensor de Difusão , Humanos , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Mapeamento EncefálicoRESUMO
Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/GAN-MAT.
Assuntos
Transtorno do Espectro Autista , Conectoma , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem Multimodal , Processamento de Imagem Assistida por Computador/métodosRESUMO
Understanding the brain's mechanisms in individuals with obesity is important for managing body weight. Prior neuroimaging studies extensively investigated alterations in brain structure and function related to body mass index (BMI). However, how the network communication among the large-scale brain networks differs across BMI is underinvestigated. This study used diffusion magnetic resonance imaging of 290 young adults to identify links between BMI and brain network mechanisms. Navigation efficiency, a measure of network routing, was calculated from the structural connectivity computed using diffusion tractography. The sensory and frontoparietal networks indicated positive associations between navigation efficiency and BMI. The neurotransmitter association analysis identified that serotonergic and dopaminergic receptors, as well as opioid and norepinephrine systems, were related to BMI-related alterations in navigation efficiency. The transcriptomic analysis found that genes associated with network routing across BMI overlapped with genes enriched in excitatory and inhibitory neurons, specifically, gene enrichments related to synaptic transmission and neuron projection. Our findings suggest a valuable insight into understanding BMI-related alterations in brain network routing mechanisms and the potential underlying cellular biology, which might be used as a foundation for BMI-based weight management.
Assuntos
Índice de Massa Corporal , Encéfalo , Humanos , Masculino , Adulto Jovem , Feminino , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Tensor de Difusão , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Conectoma , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Obesidade/diagnóstico por imagem , Obesidade/fisiopatologia , Obesidade/patologia , Imagem de Difusão por Ressonância MagnéticaRESUMO
OBJECTIVE AND BACKGROUND: This research aimed to examine the role of C-X-C motif chemokine ligand 5 (CXCL5) and C-X-C motif chemokine ligand 8 (CXCL8; also known as IL-8) in neutrophilic inflammation triggered by peri-implantitis and to shed light on the underlying mechanisms that link them to the development of this condition. MATERIALS: This study included 40 patients who visited the Department of Periodontology at Kyungpook University Dental Hospital. They were divided into two groups based on their condition: healthy implant (HI) group (n = 20) and peri-implantitis (PI) group (n = 20). Biopsy samples of PI tissue were collected from the patients under local anesthesia. HI tissue was obtained using the same method during the second implant surgery. To construct libraries for control and test RNAs, the QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen, Inc., Austria) was used according to the manufacturer's instructions. Samples were pooled based on representative cytokines obtained from RNA sequencing results and subjected to Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Hematoxylin and eosin staining, and immunohistochemistry (IHC) analysis were performed to visually assess expression levels and analyze tissue histology. Student's t-test was employed to conduct statistical analyses. RESULTS: Initially, heatmaps were used to examine gene expression variations between the HI and PI groups based on the results of RNA sequencing. Notably, among various cytokines, CXCL5 and CXCL8 had the highest expression levels in the PI group compared with the HI group, and they are known to be associated with inflammatory responses. In the gingival tissues, the expression of genes encoding cytokines such as interleukin (IL)-1ß, tumor necrosis factor-alpha (TNF)-α, interleukin (IL)-6, and CXCL5/CXCL8 was assessed via RT-qPCR. The mRNA expression level of CXCL5/CXCL8 significantly increased in the PI group compared with the HI group (p < .045). Contrarily, the mRNA expression level of interleukin 36 receptor antagonist (IL36RN) significantly decreased (p < .008). IHC enabled examination of the distribution and intensity of CXCL5/CXCL8 protein expression within the tissue samples. Specifically, increased levels of CXCL5/CXCL8 promote inflammatory responses, cellular proliferation, migration, and invasion within the peri-implant tissues. These effects are mediated through the activation of the PI3K/Akt/NF-κB signaling pathway. CONCLUSIONS: This study found that the PI sites had higher gene expression level of CXCL8/CXCL5 in the soft tissue than HI sites, which could help achieve more accurate diagnosis and treatment planning.
Assuntos
Quimiocina CXCL5 , Interleucina-8 , Neutrófilos , Peri-Implantite , Humanos , Peri-Implantite/patologia , Peri-Implantite/imunologia , Peri-Implantite/metabolismo , Interleucina-8/análise , Masculino , Neutrófilos/patologia , Feminino , Pessoa de Meia-Idade , Inflamação , AdultoRESUMO
Alkaline phosphatase (ALP) and interleukin-1beta (IL-1ß) are crucial salivary biomarkers for the diagnosis of periodontal disease that harms the periodontal tissue along with tooth loss. However, there has been no way of sensitive and portable detection of both biomarkers in saliva with multivariate signal readout. In this work, we design the multicolorimetric ALP and IL-1ß sensing platform based on geometrical transformation of silver nanoplate transducer. By utilizing enzymatic activity of ALP that dephosphorylates p-aminophenol phosphate (p-APP) to p-aminophenol (p-AP), localized surface plasmon resonance properties of silver nanoplate vary with ALP and show a distinct color change from blue to yellow based on a controlled seed transformation from triangular to hexagonal, rounded pentagonal, and spherical shape. The multicolor sensor shows an ALP detection range of 0-25 U/L with a limit of detection (LOD) of 0.0011 U/L, which is the lowest range of LOD demonstrated to date for state-of-the-art ALP sensor. Furthermore, we integrate the sensor with the conventional ELISA to detect IL-1ß for multicolor signaling and it exhibits a linear detection range of 0-250 pg/mL and an LOD of 0.066 pg/mL, which is 2 orders of magnitude lower than the monochromic conventional ELISA (LOD of 3.8 pg/mL). The ALP multicolor sensor shows high selectivity with a recovery of 100.9% in real human saliva proving its reliability and suitability for the readily accessible periodontal diagnosis with multivariate signal readout.
Assuntos
Doenças Periodontais , Prata , Humanos , Reprodutibilidade dos Testes , Fosfatase Alcalina/análise , Doenças Periodontais/diagnóstico , Corantes , Biomarcadores , Limite de DetecçãoRESUMO
When animals are faced with food depletion, food search-associated locomotion is crucial for their survival. Although food search-associated locomotion is known to be regulated by dopamine, it has yet to investigate the potential molecular mechanisms governing the regulation of genes involved in dopamine metabolism (e.g., cat-1, cat-2) and related behavioral disorders. During the studies of the pheromone ascaroside, a signal of starvation stress in C. elegans, we identified R02D3.7, renamed rcat-1 (regulator of cat genes-1), which had previously been shown to bind to regulatory sequences of both cat-1 and cat-2 genes. It was found that RCAT-1 (R02D3.7) is expressed in dopaminergic neurons and functions as a novel negative transcriptional regulator for cat-1 and cat-2 genes. When a food source becomes depleted, the null mutant, rcat-1(ok1745), exhibited an increased frequency of high-angled turns and intensified area restricted search behavior compared to the wild-type animals. Moreover, rcat-1(ok1745) also showed defects in state-dependent olfactory adaptation and basal slowing response, suggesting that the mutants are deficient in either sensing food or locomotion toward food. However, rcat-1(ok1745) has normal cuticular structures and locomotion genes. The discovery of rcat-1 not only identifies a new subtype of dopamine-related behaviors but also provides a potential therapeutic target in Parkinson's disease.
Assuntos
Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Dopamina/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica/fisiologia , Locomoção/fisiologia , Feromônios/metabolismo , Transdução de Sinais/fisiologiaRESUMO
The white-rot fungi Ceriporia lacerata is used in bioremediation, such as lignocellulose degradation, in nature. Submerged cultures and extracts of C. lacerata mycelia (CLM) have been reported to contain various active ingredients, including ß-glucan and extracellular polysaccharides, and to exert anti-diabetogenic properties in mice and cell lines. However, the immunostimulatory effects have not yet been reported. This study aimed to identify the immunomodulatory effects, and underlying mechanisms thereof, of submerged cultures of CLM using RAW264.7 macrophages and cyclophosphamide (CTX)-induced immunosuppression in mice. Compared to CTX-induced immunosuppressed mice, the spleen and thymus indexes in mice orally administered CLM were significantly increased; body weight loss was alleviated; and natural killer (NK) cytotoxicity, lymphocyte proliferation, and cytokine (tumor necrosis factor [TNF]-α, interferon [IFN]-γ, and interleukin [IL]-2) production were elevated in the serum. In RAW264.7 macrophages, treatment with CLM induced phagocytic activity, increased the production of nitric oxide (NO), and promoted mRNA expression of the immunomodulatory cytokines TNF-α, IFN-γ, IL-1ß, IL-6, IL-10, and IL-12. In addition, CLM increased the inducible NO synthase (iNOS) concentration in macrophages, similar to lipopolysaccharide (LPS) stimulation. Mechanistic studies showed that CLM induced the activation of the NF-κB, PI3k/Akt, ERK1/2, and JNK1/2 pathways. Moreover, the phosphorylation of NF-κB and IκB induced by CLM in RAW264.7 cells was suppressed by specific MAPKs and PI3K inhibitors. Further experiments with a TLR4 inhibitor demonstrated that the production of TNF-α, IL-1ß, and IL-6 induced by CLM was decreased after TLR4 was blocked. Overall, CLM protected against CTX-induced adverse reactions by enhancing humoral and cellular immune functions, and has potential as an immunomodulatory agent.
Assuntos
Citocinas/sangue , Agentes de Imunomodulação/farmacologia , Terapia de Imunossupressão , Macrófagos/efeitos dos fármacos , Micélio/química , Polyporales/química , Animais , Ciclofosfamida/toxicidade , Citocinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células RAW 264.7 , Transdução de SinaisRESUMO
Skeletal muscle is a heterogeneous tissue composed of a variety of functionally different fiber types. Slow-twitch type I muscle fibers are rich with mitochondria, and mitochondrial biogenesis promotes a shift towards more slow fibers. Leucine, a branched-chain amino acid (BCAA), regulates slow-twitch muscle fiber expression and mitochondrial function. The BCAA content is increased in porcine whole-blood protein hydrolysates (PWBPH) but the effect of PWBPH on muscle fiber type conversion is unknown. Supplementation with PWBPH (250 and 500 mg/kg for 5 weeks) increased time to exhaustion in the forced swimming test and the mass of the quadriceps femoris muscle but decreased the levels of blood markers of exercise-induced fatigue. PWBPH also promoted fast-twitch to slow-twitch muscle fiber conversion, elevated the levels of mitochondrial biogenesis markers (SIRT1, p-AMPK, PGC-1α, NRF1 and TFAM) and increased succinate dehydrogenase and malate dehydrogenase activities in ICR mice. Similarly, PWBPH induced markers of slow-twitch muscle fibers and mitochondrial biogenesis in C2C12 myotubes. Moreover, AMPK and SIRT1 inhibition blocked the PWBPH-induced muscle fiber type conversion in C2C12 myotubes. These results indicate that PWBPH enhances exercise performance by promoting slow-twitch muscle fiber expression and mitochondrial function via the AMPK/SIRT1 signaling pathway.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Biogênese de Organelas , Condicionamento Físico Animal , Hidrolisados de Proteína/farmacologia , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Transdução de Sinais , Sirtuína 1/genética , SuínosRESUMO
Although plasma complement factor B (CFB, NX_P00751), both alone and in combination with CA19-9 (i.e., the ComB-CAN), previously exhibited a reliable diagnostic ability for pancreatic cancer (PC), its detectability of the early stages and the cancer detection mechanism remained elusive. We first evaluated the diagnostic accuracy of ComB-CAN using plasma samples from healthy donors (HDs), patients with chronic pancreatitis (CP), and patients with different PC stages (I/II vs III/IV). An analysis of the area under the curve (AUC) by PanelComposer using logistic regression revealed that ComB-CAN has a superior diagnostic ability for early-stage PC (97.1.% [95% confidence interval (CI): (97.1-97.2)]) compared with CFB (94.3% [95% CI: 94.2-94.4]) or CA19-9 alone (34.3% [95% CI: 34.1-34.4]). In the comparisons of all stages of patients with PC vs CP and HDs, the AUC values of ComB-CAN, CFB, and CA19-9 were 0.983 (95% CI: 0.983-0.983), 0.950 (95% CI: 0.950-0.951), and 0.873 (95% CI: 0.873-0.874), respectively. We then investigated the molecular mechanism underlying the detection of early-stage PC by using stable cell lines of CFB knockdown and CFB overexpression. A global transcriptomic analysis coupled to cell invasion assays of both CFB-modulated cell lines suggested that CFB plays a tumor-promoting role in PC, which likely initiates the PI3K-AKT cancer signaling pathway. Thus our study establishes ComB-CAN as a reliable early diagnostic marker for PC that can be clinically applied for early PC screening in the general public.
Assuntos
Fator B do Complemento , Neoplasias Pancreáticas , Biomarcadores Tumorais/genética , Antígeno CA-19-9 , Fator B do Complemento/metabolismo , Humanos , Fosfatidilinositol 3-QuinasesRESUMO
Fusion proteoforms are translation products derived from gene fusion. Although very rare, the fusion proteoforms play important roles in biomedical science. For example, fusion proteoforms influence the development of tumors by serving as cancer markers or cell cycle regulators. Although numerous studies have reported bioinformatics tools that can predict fusion transcripts, few proteogenomic tools are available that can predict and identify proteoforms. In this study, we develop a versatile proteogenomic tool "FusionPro," which facilitates the identification of fusion transcripts and their potential translatable peptides. FusionPro provides an independent gene fusion prediction module and can build sequence databases for annotated fusion proteoforms. FusionPro shows greater sensitivity than the available fusion finders when analyzing simulated or real RNA sequencing data sets. We use FusionPro to identify 18 fusion junction peptides and three potential fusion-derived peptides by MS/MS-based analysis of leukemia cell lines (Jurkat and K562) and ovarian cancer tissues from the Clinical Proteomic Tumor Analysis Consortium. Among the identified fusion proteins, we molecularly validate two fusion junction isoforms and a translation product of FAM133B:CDK6. Moreover, sequence analysis suggests that the fusion protein participates in the cell cycle progression. In addition, our prediction results indicate that fusion transcripts often have multiple fusion junctions and that these fusion junctions tend to be distributed in a nonrandom pattern at both the chromosome and gene levels. Thus, FusionPro allows users to detect various types of fusion translation products using a transcriptome-informed approach and to gain a comprehensive understanding of the formation and biological roles of fusion proteoforms.
Assuntos
Fusão Gênica , Neoplasias Ovarianas/genética , Proteogenômica/métodos , Software , Feminino , Humanos , Células Jurkat , Células K562RESUMO
Rutaecarpine (RUT) is a bioactive alkaloid isolated from the fruit of Evodia rutaecarpa that exerts a cellular protective effect. However, its protective effects on endothelial cells and its mechanism of action are still unclear. In this study, we demonstrated the effects of RUT on nitric oxide (NO) synthesis via endothelial nitric oxide synthase (eNOS) phosphorylation in endothelial cells and the underlying molecular mechanisms. RUT treatment promoted NO generation by increasing eNOS phosphorylation. Additionally, RUT induced an increase in intracellular Ca2+ concentration and phosphorylation of Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß), AMP-activated protein kinase (AMPK), and Ca2+/calmodulin-dependent kinase II (CaMKII). Inhibition of transient receptor potential vanilloid type 1 (TRPV1) attenuated RUT-induced intracellular Ca2+ concentration and phosphorylation of CaMKII, CaMKKß, AMPK, and eNOS. Treatment with KN-62 (a CaMKII inhibitor), Compound C (an AMPK inhibitor), and STO-609 (a CaMKKß inhibitor) suppressed RUT-induced eNOS phosphorylation and NO generation. Interestingly, RUT attenuated the expression of ICAM-1 and VCAM-1 induced by TNF-α and inhibited the inflammation-related NF-κB signaling pathway. Taken together, these results suggest that RUT promotes NO synthesis and eNOS phosphorylation via the Ca2+/CaMKII and CaM/CaMKKß/AMPK signaling pathways through TRPV1. These findings provide evidence that RUT prevents endothelial dysfunction and benefit cardiovascular health.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Endotélio Vascular/metabolismo , Alcaloides Indólicos/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Quinazolinas/farmacologia , Canais de Cátion TRPV/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Endotélio Vascular/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Transdução de Sinais , Canais de Cátion TRPV/genética , Vasodilatadores/farmacologiaRESUMO
Inflammatory diseases are caused by excessive inflammation from pro-inflammatory mediators and cytokines produced by macrophages. The Nrf2 signaling pathway protects against inflammatory diseases by inhibiting excessive inflammation via the regulation of antioxidant enzymes, including HO-1 and NQO1. We investigated the anti-inflammatory effect of impressic acid (IPA) isolated from Acanthopanax koreanum on the lipopolysaccharide (LPS)-induced inflammation and the underlying molecular mechanisms in RAW264.7 cells. IPA attenuated the LPS-induced production of pro-inflammatory cytokines and reactive oxygen species, and the activation of the NF-κB signaling pathway. IPA also increased the protein levels of Nrf2, HO-1, and NQO1 by phosphorylating CaMKKß, AMPK, and GSK3ß. Furthermore, ML385, an Nrf2 inhibitor, reversed the inhibitory effect of IPA on LPS-induced production of pro-inflammatory cytokines in RAW264.7 cells. Therefore, IPA exerts an anti-inflammatory effect via the AMPK/GSK3ß/Nrf2 signaling pathway in macrophages. Taken together, the findings suggest that IPA has preventive potential for inflammation-related diseases.
Assuntos
Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Triterpenos/farmacologia , Proteínas Quinases Ativadas por AMP/imunologia , Animais , Anti-Inflamatórios/química , Eleutherococcus/química , Glicogênio Sintase Quinase 3 beta/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Fator 2 Relacionado a NF-E2/imunologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Triterpenos/químicaRESUMO
Various liver diseases, including hepatocellular carcinoma (HCC), have been linked to mitochondrial dysfunction, reduction of reactive oxygen species (ROS), and elevation of nitric oxide (NO). In this study, we subjected the human liver mitochondrial proteome to extensive quantitative proteomic profiling analysis and molecular characterization to identify potential signatures indicative of cancer cell growth and progression. Sequential proteomic analysis identified 2452 mitochondrial proteins, of which 1464 and 2010 were classified as nontumor and tumor (HCC) mitochondrial proteins, respectively, with 1022 overlaps. Further metabolic mapping of the HCC mitochondrial proteins narrowed our biological characterization to four proteins, namely, ALDH4A1, LRPPRC, ATP5C1, and ALDH6A1. The latter protein, a mitochondrial methylmalonate semialdehyde dehydrogenase (ALDH6A1), was most strongly suppressed in HCC tumor regions (â¼10-fold decrease) in contrast to LRPPRC (â¼6-fold increase) and was predicted to be present in plasma. Accordingly, we selected ALDH6A1 for functional analysis and engineered Hep3B cells to overexpress this protein, called ALDH6A1-O/E cells. Since ALDH6A1 is predicted to be involved in mitochondrial respiration, we assessed changes in the levels of NO and ROS in the overexpressed cell lines. Surprisingly, in ALDH6A1-O/E cells, NO was decreased nearly 50% but ROS was increased at a similar level, while the former was restored by treatment with S-nitroso-N-acetyl-penicillamine. The lactate levels were also decreased relative to control cells. Propidium iodide and Rhodamine-123 staining suggested that the decrease in NO and increase in ROS in ALDH6A1-O/E cells could be caused by depolarization of the mitochondrial membrane potential (ΔΨ). Taken together, our results suggest that hepatic neoplastic transformation appears to suppress the expression of ALDH6A1, which is accompanied by a respective increase and decrease in NO and ROS in cancer cells. Given the close link between ALDH6A1 suppression and abnormal cancer cell growth, this protein may serve as a potential molecular signature or biomarker of hepatocarcinogenesis and treatment responses.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Aldeído Oxirredutases , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismoRESUMO
We previously reported that human carboxylesterase 1 (CES1), a serine esterase containing a unique N-linked glycosyl group at Asn79 (N79 CES1), is a candidate serological marker of hepatocellular carcinoma (HCC). CES1 is normally present at low-to-undetectable levels in normal human plasma, HCC tumors, and major liver cancer cell lines. To investigate the potential mechanism underlying the suppression of CES1 expression in liver cancer cells, we took advantage of the low detectability of this marker in tumors by overexpressing CES1 in multiple HCC cell lines, including stable Hep3B cells. We found that the population of CES1-overexpressing (OE) cells decreased and that their doubling time was longer compared with mock control liver cancer cells. Using interactive transcriptome, proteome, and subsequent Gene Ontology enrichment analysis of CES1-OE cells, we found substantial decreases in the expression levels of genes involved in cell cycle regulation and proliferation. This antiproliferative function of the N79 glycan of CES1 was further supported by quantitative real-time polymerase chain reaction, flow cytometry, and an apoptosis protein array assay. An analysis of the levels of key signaling target proteins via Western blotting suggested that CES1 overexpression exerted an antiproliferative effect via the PKD1/PKCµ signaling pathway. Similar results were also seen in another HCC cell line (PLC/RFP/5) after transient transfection with CES1 but not in similarly treated non-HCC cell lines (e.g., HeLa and Tera-1 cells), suggesting that CES1 likely exerts a liver cell-type-specific suppressive effect. Given that the N-linked glycosyl group at Asn79 (N79 glycan) of CES1 is known to influence CES1 enzyme activity, we hypothesized that the post-translational modification of CES1 at N79 may be linked to its antiproliferative activity. To investigate the regulatory effect of the N79 glycan on cellular growth, we mutated the single N-glycosylation site in CES1 from Asn to Gln (CES1-N79Q) via site-directed mutagenesis. Fluorescence 2-D difference gel electrophoresis protein expression analysis of cell lysates revealed an increase in cell growth and a decrease in doubling time in cells carrying the N79Q mutation. Thus our results suggest that CES1 exerts an antiproliferative effect in liver cancer cells and that the single N-linked glycosylation at Asn79 plays a potential regulatory role. These functions may underlie the undetectability of CES1 in human HCC tumors and liver cancer cell lines. Mass spectrometry data are available via ProteomeXchange under the identifier PXD021573.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Neoplasias Hepáticas/genéticaRESUMO
One of the goals of the Chromosome-Centric Human Proteome Project (C-HPP) is to map and characterize the functions of protein isoforms produced by alternative splicing of genes. However, identifying alternative splice variants (ASVs) via mass spectrometry remains a major challenge, because ASVs usually contain highly homologous peptide sequences. A routine protein sequence analysis suggests that more than half of the investigated proteins do not generate two or more uniquely mapping peptides that would enable their isoforms to be distinguished. Here, we develop a new proteogenomics method, named "ASV-ID" (alternative splicing variants identification), which enables identification of ASVs by using a cell type-specific protein sequence database that is supported by RNA-Seq data. Using this workflow, we identify 1935 distinct proteins under highly stringent conditions. In fact, transcript evidence on these 841 proteins helps us distinguish them from other isoforms, despite the fact that these proteins are not predicted to make 2 or more uniquely mapping peptides. We also demonstrate that ASV-ID enables detection of 19 differently expressed isoforms present in several cell lines. Thus, a new workflow using ASV-ID has the potential to map yet-to-be-identified difficult protein isoforms in a simple and robust way.
Assuntos
Isoformas de Proteínas/análise , Proteogenômica/métodos , Transcrição Gênica , Fluxo de Trabalho , Processamento Alternativo , Sequência de Bases , Cromossomos Humanos , Bases de Dados de Proteínas , Humanos , Espectrometria de MassasRESUMO
An important goal of the Human Proteome Organization (HUPO) Chromosome-centric Human Proteome Project (C-HPP) is to correctly define the number of canonical proteins encoded by their cognate open reading frames on each chromosome in the human genome. When identified with high confidence of protein evidence (PE), such proteins are termed PE1 proteins in the online database resource, neXtProt. However, proteins that have not been identified unequivocally at the protein level but that have other evidence suggestive of their existence (PE2-4) are termed missing proteins (MPs). The number of MPs has been reduced from 5511 in 2012 to 2186 in 2018 (neXtProt 2018-01-17 release). Although the annotation of the human proteome has made significant progress, the "parts list" alone does not inform function. Indeed, 1937 proteins representing â¼10% of the human proteome have no function either annotated from experimental characterization or predicted by homology to other proteins. Specifically, these 1937 "dark proteins" of the so-called dark proteome are composed of 1260 functionally uncharacterized but identified PE1 proteins, designated as uPE1, plus 677 MPs from categories PE2-PE4, which also have no known or predicted function and are termed uMPs. At the HUPO-2017 Annual Meeting, the C-HPP officially adopted the uPE1 pilot initiative, with 14 participating international teams later committing to demonstrate the feasibility of the functional characterization of large numbers of dark proteins (CP), starting first with 50 uPE1 proteins, in a stepwise chromosome-centric organizational manner. The second aim of the feasibility phase to characterize protein (CP) functions of 50 uPE1 proteins, termed the neXt-CP50 initiative, is to utilize a variety of approaches and workflows according to individual team expertise, interest, and resources so as to enable the C-HPP to recommend experimentally proven workflows to the proteome community within 3 years. The results from this pilot will not only be the cornerstone of a larger characterization initiative but also enhance understanding of the human proteome and integrated cellular networks for the discovery of new mechanisms of pathology, mechanistically informative biomarkers, and rational drug targets.
Assuntos
Cromossomos Humanos/genética , Bases de Dados de Proteínas , Proteoma/análise , Genoma Humano , Humanos , Espectrometria de Massas , Anotação de Sequência Molecular , Fases de Leitura Aberta , Projetos Piloto , Proteoma/genéticaRESUMO
One of the major goals of the Chromosome-Centric Human Proteome Project (C-HPP) is to fill the knowledge gaps between human genomic information and the corresponding proteomic information. These gaps are due to "missing" proteins (MPs)-predicted proteins with insufficient evidence from mass spectrometry (MS), biochemical, structural, or antibody analyses-that currently account for 2579 of the 19587 predicted human proteins (neXtProt, 2017-01). We address some of the lessons learned from the inconsistent annotations of missing proteins in databases (DB) and demonstrate a systematic proteogenomic approach designed to explore a potential new function of a known protein. To illustrate a cautious and strategic approach for characterization of novel function in vitro and in vivo, we present the case of Na(+)/H(+) exchange regulatory cofactor 1 (NHERF1/SLC9A3R1, located at chromosome 17q25.1; hereafter NHERF1), which was mistakenly labeled as an MP in one DB (Global Proteome Machine Database; GPMDB, 2011-09 release) but was well known in another public DB and in the literature. As a first step, NHERF1 was determined by MS and immunoblotting for its molecular identity. We next investigated the potential new function of NHERF1 by carrying out the quantitative MS profiling of placental trophoblasts (PXD004723) and functional study of cytotrophoblast JEG-3 cells. We found that NHERF1 was associated with trophoblast differentiation and motility. To validate this newly found cellular function of NHERF1, we used the Caenorhabditis elegans mutant of nrfl-1 (a nematode ortholog of NHERF1), which exhibits a protruding vulva (Pvl) and egg-laying-defective phenotype, and performed genetic complementation work. The nrfl-1 mutant was almost fully rescued by the transfection of the recombinant transgenic construct that contained human NHERF1. These results suggest that NHERF1 could have a previously unknown function in pregnancy and in the development of human embryos. Our study outlines a stepwise experimental platform to explore new functions of ambiguously denoted candidate proteins and scrutinizes the mandated DB search for the selection of MPs to study in the future.
Assuntos
Fosfoproteínas/fisiologia , Proteogenômica/métodos , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Caenorhabditis elegans/genética , Diferenciação Celular , Movimento Celular , Bases de Dados de Proteínas , Feminino , Humanos , Immunoblotting , Espectrometria de Massas , Reprodução , Transgenes , Trofoblastos/citologiaRESUMO
Associations between brain structure and body mass index (BMI) are increasingly gaining attention. Although BMI-related regional alterations in brain morphology have been previously reported, the effect of BMI on the microstructural profiles, which provide information on the proxy of neuronal density within the cortex, is unexplored. In this study, we investigated the links between cortical layer-specific microstructural profiles and BMI in 302 neurologically healthy young adults. Using the microstructure-sensitive proxy based on the T1-and T2-weighted ratio, we estimated microstructural profile covariance (MPC) by calculating linear correlations of cortical depth-wise intensity profiles between different brain regions. Then, low-dimensional gradients of the MPC matrix were estimated using dimensionality reduction techniques, and the gradients were associated with BMI. Significant effects in the heteromodal association areas were observed. The BMI-gradient association map was related to the geodesic distance along the cortical surface, curvature, and sulcal depth, suggesting that the microstructural alterations occurred along the cortical topology. The BMI-gradient association map was further linked to cognitive states related to negative emotions. Our findings may provide insights into understanding the atypical cortical microstructure associated with BMI.
RESUMO
Age-related macular degeneration (AMD), characterized by macular retinal degeneration, poses a significant health concern due to the lack of effective treatments for prevalent dry AMD. The progression of AMD is closely linked to reactive oxygen species and Fas signaling, emphasizing the need for targeted interventions. In this study, we utilized a NaIO3-induced retinal degeneration mouse model to assess the efficacy of Fas-blocking peptide (FBP). Intravitreal administration of FBP successfully suppressed Fas-mediated inflammation and apoptosis, effectively arresting AMD progression in mice. We developed a 6R-conjugated FBP (6R-FBP) for eye drop administration. 6R-FBP, administered as an eye drop, reached the retinal region, attenuating degeneration by modulating the expression of inflammatory cytokines and blocking Fas-mediated apoptosis in rodent and rabbit NaIO3-induced retinal degeneration models to address practical concerns. Intravitreal FBP and 6R-FBP eye drops effectively reduced retinal degeneration and improved retinal thickness in rodent and rabbit models. This study highlights the therapeutic potential of FBP, particularly 6R-FBP as an eye drop, in inhibiting Fas-mediated cell signaling and protecting against retinal cell death and inflammation in dry AMD. Future investigations should explore the translational prospects of this approach in primates with eye structures comparable to those of humans.
Assuntos
Degeneração Macular , Degeneração Retiniana , Humanos , Camundongos , Animais , Coelhos , Soluções Oftálmicas/uso terapêutico , Degeneração Macular/metabolismo , Peptídeos/uso terapêutico , InflamaçãoRESUMO
BACKGROUND: Oral squamous cell carcinoma (OSCC) is an aggressive cancer with limited treatment options. Parishin A, a natural compound derived from Gastrodia elata, possesses multiple therapeutic properties. However, its effects on OSCC remain unexplored. PURPOSE: This study explores the anti-cancer potential of Parishin A on OSCC and its mechanisms. METHODS: OSCC cell lines YD-10B and Ca9-22 were treated with varying Parishin A concentrations. Cell viability was detected using the CCK-8 assay, and colony formation was evaluated in agarose gel. Migration and invasion ability were assessed through wound healing and Matrigel invasion assays. The protein expression levels involved in the PI3K/AKT/mTOR signaling pathway and epithelial-mesenchymal transition (EMT) markers were examined via Western blotting. RESULTS: Parishin A inhibited OSCC cell viability in both dose- and time-dependent manners, with significant reductions at 20, 40, 60, and 80 µM, without affecting normal human gingival fibroblasts. Colony formation decreased substantially at ≥40 µM higher Parishin A concentrations in a dose-dependent manner. Also, migration and invasion assays showed significant suppression by Parishin A treatment concentration ≥40 µM in a dose-dependent manner, as evidenced by decreased wound closure and invasion. Western blot analyses revealed increased E-cadherin levels and decreased N-cadherin and vimentin levels, suggesting EMT inhibition. Parishin A also decreased the phosphorylation levels of PI3K, AKT, and mTOR. CONCLUSION: Collectively, these findings support the potential of Parishin A as an anti-OSCC agent.