Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(3)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991788

RESUMO

Transglutaminase 2 (TG2) is a Ca2+-dependent enzyme, which regulates various cellular processes by catalyzing protein crosslinking or polyamination. Intracellular TG2 is activated and inhibited by Ca2+ and GTP binding, respectively. Although aberrant TG2 activation has been implicated in the pathogenesis of diverse diseases, including cancer and degenerative and fibrotic diseases, the structural basis for the regulation of TG2 by Ca2+ and GTP binding is not fully understood. Here, we produced and analyzed a Ca2+-containing TG2 crystal, and identified two glutamate residues, E437 and E539, as Ca2+-binding sites. The enzymatic analysis of the mutants revealed that Ca2+ binding to these sites is required for the transamidase activity of TG2. Interestingly, we found that magnesium (Mg2+) competitively binds to the E437 and E539 residues. The Mg2+ binding to these allosteric sites enhances the GTP binding/hydrolysis activity but inhibits transamidase activity. Furthermore, HEK293 cells transfected with mutant TG2 exhibited higher transamidase activity than cells with wild-type TG2. Cells with wild-type TG2 showed an increase in transamidase activity under Mg2+-depleted conditions, whereas cells with mutant TG2 were unaffected. These results indicate that E437 and E539 are Ca2+-binding sites contributing to the reciprocal regulation of transamidase and GTP binding/hydrolysis activities of TG2 through competitive Mg2+ binding.


Assuntos
Aminoaciltransferases/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Magnésio/metabolismo , Transglutaminases/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/química , Ligação Competitiva , Cálcio/química , Ativação Enzimática , Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/química , Humanos , Hidrólise , Magnésio/química , Modelos Biológicos , Conformação Molecular , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Relação Estrutura-Atividade , Transglutaminases/química
2.
Opt Express ; 25(4): A113-A123, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241669

RESUMO

We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.

3.
Opt Express ; 25(10): 10724-10734, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788762

RESUMO

An optically efficient liquid-crystal display (LCD) structure using a patterned quantum dot (QD) film and a short-pass filter (SPF) was proposed and fabricated. The patterned QD film contributed to the generation of 95% in the area ratio (or 90% in the coverage ratio) of the Rec. 2020 color gamut. This was achieved by avoiding the problem of interaction between white backlight and broad transmittance spectra of color filters (CFs) as seen in a conventional LCD with a mixed QD film as a reference. The patterned QD film can maintain the narrow bandwidth of the green and the red QD colors before passing through the CFs. Additionally, the optical intensities of the red, green, and blue spectra were enhanced to 1.63, 1.72, and 2.16 times the reference LCD values, respectively. This was a result of separated emission of the red and green patterned QD film and reflection of the red and green light to the forward direction by the SPF.

4.
Nanotechnology ; 28(40): 405203, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28805648

RESUMO

We present matrix-free methods for fabricating highly luminescent and transparent CdSe/ZnS quantum dot (QD)/polymer nanocomposites utilizing poly(methyl methacrylate) (PMMA)-grafted QDs with various molecular weights. We found that the QD-PMMA nanocomposites prepared by these matrix-free methods were superior to those prepared by a simple blending method in relation to their optical property, QD dispersion, and quantum efficiency (QE). In particular, a matrix-free nanocomposite containing PMMA with a molecular weight of 2000 had the highest QE (52.8%) and transmittance of all the samples studied even at a very high QD concentration (49 wt%). This finding was attributed to the enhanced passivation of the QD surface due to the higher grafting density of the PMMA ligands and reduced energy transfer due to more uniform dispersion of QDs. Finally, we applied the nanocomposites to LED devices, and found that the matrix-free nanocomposite exhibited a higher color conversion efficiency and smaller redshift in the peak emission wavelength than that prepared using a simple blending method.

5.
Angew Chem Int Ed Engl ; 56(12): 3256-3260, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28097753

RESUMO

Diesel engine technology is still the most effective solution to meet tighter CO2 regulations in the mobility and transport sector. In implementation of fuel-efficient diesel engines, the poor thermal durability of lean nitrogen oxides (NOx ) aftertreatment systems remains as one major technical hurdle. Divalent copper ions when fully exchanged into high-silica LTA zeolites are demonstrated to exhibit excellent activity maintenance for NOx reduction with NH3 under vehicle simulated conditions even after hydrothermal aging at 900 °C, a critical temperature that the current commercial Cu-SSZ-13 catalyst cannot overcome owing to thermal deactivation. Detailed structural characterizations confirm the presence of Cu2+ ions only at the center of single 6-rings that act not only as a catalytically active center, but also as a dealumination suppressor. The overall results render the copper-exchanged LTA zeolite attractive as a viable substitute for Cu-SSZ-13.

6.
Biochim Biophys Acta ; 1853(3): 619-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25549939

RESUMO

Cystamine and its reduced form cysteamine showed protective effects in various models of neurodegenerative disease, including Huntington's disease and Parkinson's disease. Other lines of evidence demonstrated the cytotoxic effect of cysteamine on duodenal mucosa leading to ulcer development. However, the mechanism for cystamine cytotoxicity remains poorly understood. Here, we report a new pathway in which cystamine induces apoptosis by targeting apoptosis-inducing factor (AIF). By screening of various cell lines, we observed that cystamine and cysteamine induce cell death in a cell type-specific manner. Comparison between cystamine-sensitive and cystamine-resistant cell lines revealed that cystamine cytotoxicity is not associated with unfolded protein response, reactive oxygen species generation and transglutaminase or caspase activity; rather, it is associated with the ability of cystamine to trigger AIF nuclear translocation. In cystamine-sensitive cells, cystamine suppresses the levels of intracellular glutathione by inhibiting γ-glutamylcysteine synthetase expression that triggers AIF translocation. Conversely, glutathione supplementation completely prevents cystamine-induced AIF translocation and apoptosis. In rats, cysteamine administration induces glutathione depletion and AIF translocation leading to apoptosis of duodenal epithelium. These results indicate that AIF translocation through glutathione depletion is the molecular mechanism of cystamine toxicity, and provide important implications for cystamine in the neurodegenerative disease therapeutics as well as in the regulation of AIF-mediated cell death.


Assuntos
Fator de Indução de Apoptose/fisiologia , Apoptose/efeitos dos fármacos , Cistamina/farmacologia , Glutationa/metabolismo , Animais , Apoptose/genética , Úlcera Duodenal/metabolismo , Úlcera Duodenal/patologia , Feminino , Células HeLa , Humanos , Células MCF-7 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos
7.
Sci Adv ; 10(20): eadn8465, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758786

RESUMO

Deep-blue perovskite light-emitting diodes (PeLEDs) of high purity are highly sought after for next-generation displays complying with the Rec. 2020 standard. However, mixed-halide perovskite materials designed for deep-blue emitters are prone to halide vacancies, which readily occur because of the low formation energy of chloride vacancies. This degrades bandgap instability and performance. Here, we propose a chloride vacancy-targeting passivation strategy using sulfonate ligands with different chain lengths. The sulfonate groups have a strong affinity for lead(II) ions, effectively neutralizing vacancies. Our strategy successfully suppressed phase segregation, yielding color-stable deep-blue PeLEDs with an emission peak at 461 nanometers and a maximum luminance (Lmax) of 2707 candela per square meter with external quantum efficiency (EQE) of 3.05%, one of the highest for Rec. 2020 standard-compliant deep-blue PeLEDs. We also observed a notable increase in EQE up to 5.68% at Lmax of 1978 candela per square meter with an emission peak at 461 nanometers by changing the carbon chain length.

8.
Sci Rep ; 14(1): 11522, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769102

RESUMO

Digital PCR (dPCR) is a technique for absolute quantification of nucleic acid molecules. To develop a dPCR technique that enables more accurate nucleic acid detection and quantification, we established a novel dPCR apparatus known as centrifugal force real-time dPCR (crdPCR). This system is efficient than other systems with only 2.14% liquid loss by dispensing samples using centrifugal force. Moreover, we applied a technique for analyzing the real-time graph of the each micro-wells and distinguishing true/false positives using artificial intelligence to mitigate the rain, a persistent issue with dPCR. The limits of detection and quantification were 1.38 and 4.19 copies/µL, respectively, showing a two-fold higher sensitivity than that of other comparable devices. With the integration of this new technology, crdPCR will significantly contribute to research on next-generation PCR targeting absolute micro-analysis.


Assuntos
DNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA/análise , DNA/genética , Centrifugação/métodos , Limite de Detecção
9.
Ultrason Sonochem ; 100: 106644, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844347

RESUMO

Whilst a number of studies have demonstrated that low-intensity pulsed ultrasound (LIPUS) is a promising therapeutic ultrasound technique that can be used for delivering mild mechanical stimuli to target tissue non-invasively, the underlying biophysical mechanisms still remain unclear. Most mechanism studies have focused explicitly on the effects of LIPUS on the cell membrane and mechanosensitive receptors. In the present study, we propose an additional mechanism by which LIPUS propagation through living cells may directly impact intracellular dynamics, particularly the diffusion transport of biomolecules. To support our hypothesis, human epithelial-like cells (SaOS-2 and HeLa) seeded on a confocal dish placed on a microscope stage were exposed to LIPUS with various exposure conditions (ultrasound frequencies of 0.5, 1 and 3 MHz, peak acoustic pressure of 200 and 400 kPa, a pulse repetition frequency of 1 kHz and a 20 % duty cycle), and the diffusivities of various sizes of biomolecules in the cytoplasm area were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, giant unilamellar vesicles (GUVs) filled with macromolecules were used to examine the physical causal relationship between LIPUS and molecular diffusion changes. Nucleocytoplasmic transport coefficients were also measured by modified FRAP that bleaches the whole cell nuclear region. Extracellular signal-regulated kinases (ERK) activity (the phosphorylation dynamics) was monitored using fluorescence resonance energy transfer (FRET) microscopy. All the measurements were taken during, before and after the LIPUS exposure. Our experimental results clearly showed that the diffusion coefficients of macromolecules within the cell increased with acoustic pressure by 12.1 to 33.5 % during the sonication, and the increments were proportional to their molecular sizes regardless of the ultrasound frequency used. This observation in living cells was consistent with the GUVs exposed to the LIPUS, which indicated that the diffusivity increase was a passive physical response to the acoustic energy of LIPUS. Under the 1 MHz LIPUS exposure with 400 kPa, the passive nucleocytoplasmic transport of enhanced green fluorescent protein (EGFP) was accelerated by 21.4 %. With the same LIPUS exposure condition, both the diffusivity and phosphorylation of ERK induced by EGF treatment were significantly elevated simultaneously, which implied that LIPUS could also modify the kinase kinetics in the signal transduction process. Taken together, this study is the first attempt to uncover the physical link between LIPUS and the dynamics of intracellular macromolecules and related biological processes that LIPUS can possibly increase the diffusivity of intracellular macromolecules, leading to the changes in the basic cellular processes: passive nucleocytoplasmic transport and ERK. Our findings can provide a novel perspective that the mechanotransduction process that the intracellular region, in addition to the cell membrane, can convert the acoustic stimuli of LIPUS to biochemical signals.


Assuntos
Mecanotransdução Celular , Ondas Ultrassônicas , Animais , Humanos , Ultrassonografia , Mamíferos
10.
Stem Cells Int ; 2023: 8815888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900967

RESUMO

Transglutaminase 2 (TG2) is a multifunctional enzyme that exhibits transamidase, GTPase, kinase, and protein disulfide isomerase (PDI) activities. Of these, transamidase-mediated modification of proteins regulates apoptosis, differentiation, inflammation, and fibrosis. TG2 is highly expressed in mesenchymal stem cells (MSCs) compared with differentiated cells, suggesting a role of TG2 specific for MSC characteristics. In this study, we report a new function of TG2 in the regulation of MSC redox homeostasis. During in vitro MSC expansion, TG2 is required for cell proliferation and self-renewal by preventing premature senescence but has no effect on the expression of surface antigens and oxidative stress-induced cell death. Moreover, induction of differentiation upregulates TG2 that promotes osteoblastic differentiation. Molecular analyses revealed that TG2 mediates tert-butylhydroquinone, but not sulforaphane, -induced nuclear factor erythroid 2-related factor 2 (NRF2) activation in a transamidase activity-independent manner. Differences in the mechanism of action between two NRF2 activators suggest that PDI activity of TG2 may be implicated in the stabilization of NRF2. The role of TG2 in the regulation of antioxidant response was further supported by transcriptomic analysis of MSC. These results indicate that TG2 is a critical enzyme in eliciting antioxidant response in MSC through NRF2 activation, providing a target for optimizing MSC manufacturing processes to prevent premature senescence.

11.
Anal Chim Acta ; 1213: 339960, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35641064

RESUMO

For real-time and high-sensitivity analysis of low-concentration targets, a sandwich immunoassay using second antibody-second gold nanoparticle (2nd Ab-2nd AuNP) conjugates was combined with fiber-optic localized surface plasmon resonance (FO LSPR). An FO LSPR format was constructed by immobilizing AuNPs on a fiber-optic cross-section for compactness, portability, and ease of handling. In addition, it was combined with a microfluidic system to ensure reproducibility and reliability of measurements. A detection limit of 97.6 fg/mL (148 aM) was obtained for thyroglobulin (Tg) without a sandwich assay. The detection limit was enhanced by approximately 15 times (6.6 fg/mL, 10 aM) when a sandwich strategy was performed with a 2nd Ab-2nd AuNP signal amplifier to further improve the responsivity. Additionally, the good selectivity of the proposed method was confirmed against the unpaired antigen. To evaluate its practical applicability in the field, an FO LSPR biosensor boosted with a sandwich assay using antibody-functionalized AuNPs was applied to detect Tg contained in patient serum, and the results were compared and verified with those of a commercial radioimmunoassay kit. Based on the above results, the signal-enhancing immunoassay with FO LSPR will contribute to the development of optical biosensors for early diagnosis and preventive applications.


Assuntos
Técnicas Biossensoriais , Imunoconjugados , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Ouro , Humanos , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície/métodos
12.
Healthcare (Basel) ; 10(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35206908

RESUMO

Studies have reported that mild adverse events (AEs) are common after manual therapy and that there is a risk of serious injury. We aimed to assess the safety of Chuna manipulation therapy (CMT), a traditional manual Korean therapy, by analysing AEs in patients who underwent this treatment. Patients who received at least one session of CMT between December 2009 and March 2019 at 14 Korean medicine hospitals were included. Electronic patient charts and internal audit data obtained from situation report logs were retrospectively analysed. All data were reviewed by two researchers. The inter-rater agreement was assessed using the Cohen's kappa coefficient, and reliability analysis among hospitals was assessed using Cronbach's Alpha coefficient. In total, 2,682,258 CMT procedures were performed in 289,953 patients during the study period. There were 50 AEs, including worsened pain (n = 29), rib fracture (n = 11), falls during treatment (n = 6), chest pain (n = 2), dizziness (n = 1), and unpleasant feeling (n = 1). The incidence of mild to moderate AEs was 1.83 (95% confidence interval [CI] 1.36-2.39) per 100,000 treatment sessions, and that of severe AEs was 0.04 (95% CI 0.00-0.16) per 100,000 treatment sessions. Thus, AEs of any level of severity were very rare after CMT. Moreover, there were no instances of carotid artery dissection or spinal cord injury, which are the most severe AEs associated with manual therapy in other countries.

13.
Graefes Arch Clin Exp Ophthalmol ; 249(4): 529-36, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21104267

RESUMO

BACKGROUND: The purpose of the experiment reported here was to assess the involvement of advanced glycation end products (AGEs), oxidative stress, and nuclear factor kappa-B (NF-κB) activation in the development of diabetic keratopathy. METHODS: Diabetes was induced by intraperitoneal streptozotocin injection in male Sprague-Dawley rats. The thickness of the cornea was measured. Apoptosis was detected by TUNEL assay and western blot for caspase-3. The expression of AGEs and 8-hydroxydeoxyguanosine (8-OHdG) were studied by immunohistochemistry in corneal tissues of normoglycaemic and diabetic rats. NF-κB activation was evaluated by electrophoretic mobility shift assay and southwestern histochemistry. RESULTS: Corneal edema was observed in diabetic rats. The thickness of cornea was higher in diabetic than in control rats. AGEs were accumulated in corneal tissues. 8-OHdG and NF-κB were identified in corneal epithelium, stroma and endothelium, and its expressions were greater in diabetic than in those of control rats. Diabetes induces significant alterations in rat corneal tissue structure. CONCLUSIONS: The higher expression of AGE, 8-OHdG and NF-κB in corneal tissues of diabetic rats suggests that these factors are involved in apoptosis and in subsequent corneal alterations related to diabetic keratopathy.


Assuntos
Doenças da Córnea/metabolismo , Complicações do Diabetes , Diabetes Mellitus Experimental/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Animais , Apoptose , Western Blotting , Doenças da Córnea/patologia , Substância Própria/metabolismo , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Diabetes Mellitus Experimental/patologia , Ensaio de Desvio de Mobilidade Eletroforética , Endotélio Corneano/metabolismo , Epitélio Corneano/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Ratos , Ratos Sprague-Dawley
14.
Artigo em Inglês | MEDLINE | ID: mdl-20953387

RESUMO

Damage of lens epithelial cells (LECs) has been implicated in cataract formation. The aim of this study was to investigate the protective effect of KIOM-79, a combination of four plant extracts, on LECs. We examined the levels of advanced glycation end products (AGEs), nuclear factor-kappaB (NF-κB) activation and inducible nitric oxide synthase (iNOS) expression in LECs during cataract development using the Zucker diabetic fatty (ZDF) rat, an animal model of type 2 diabetes. KIOM-79 was orally administered by gavage to ZDF rats once a day for 13 weeks. Apoptosis was detected by TUNEL assay, and NF-κB activation and iNOS expression were studied by southwestern histochemistry and immunohistochemistry, respectively. In diabetic cataractous lenses, TUNEL-positive LECs were markedly increased 20-fold, and AGEs were highly accumulated (2.7-fold) in LECs. In addition, both NF-κB activation, and iNOS expression were significantly enhanced 3- to 5-fold, respectively, compared to levels found in normal ZL rats. However, the administration of KIOM-79 delayed the development of diabetic cataracts and prevented LEC apoptosis (70%) through the inhibition of AGEs, NF-κB-activation and iNOS expression. These observations suggest that KIOM-79 is useful in inhibiting diabetic cataractogenesis and acts through an antiapoptotic mechanism to protect LECs from injury.

15.
Artigo em Inglês | MEDLINE | ID: mdl-19605553

RESUMO

Advanced glycation end products (AGEs) have been implicated in the development of diabetic complications, including diabetic nephropathy. KIOM-79, an 80% ethanolic extract obtained from parched Puerariae Radix, gingered Magnolia Cortex, Glycyrrhiza Radix and Euphorbia Radix, was investigated for its effects on the development of renal disease in Zucker diabetic fatty rats, an animal model of type 2 diabetes. In vitro inhibitory effect of KIOM-79 on AGEs cross-linking was examined by enzyme-linked immunosorbent assay (ELISA). KIOM-79 (50 mg/kg/day) was given to Zucker diabetic fatty rats for 13 weeks. Body and kidney weight, blood glucose, glycated hemoglobin, urinary albumin and creatinine excretions were monitored. Kidney histopathology, collagen accumulation, fibrinogen and transforming growth factor-beta 1 (TGF-ß1) expression were also examined. KIOM-79 reduced blood glucose, kidney weight, histologic renal damage and albuminuria in Zucker diabetic fatty rats. KIOM-79 prevented glomerulosclerosis, tubular degeneration, collagen deposition and podocyte apoptosis. In the renal cortex, TGF-ß1, fibronectin mRNA and protein were significantly reduced by KIOM-79 treatment. KIOM-79 reduces AGEs accumulation in vivo, AGE-protein cross-linking and protein oxidation. KIOM-79 could be beneficial in preventing the progression of diabetic glomerularsclerosis in type 2 diabetic rats by attenuating AGEs deposition in the glomeruli.

16.
Genes Genomics ; 43(4): 333-342, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33555506

RESUMO

BACKGROUND: Transglutaminase 2 (TG2) mediates protein modifications by crosslinking or by incorporating polyamine in response to oxidative or DNA-damaging stress, thereby regulating apoptosis, extracellular matrix formation, and inflammation. The regulation of transcriptional activity by TG2-mediated histone serotonylation or by Sp1 crosslinking may also contribute to cellular stress responses. OBJECTIVE: In this study, we attempted to identify TG2-interacting proteins to better understand the role of TG2 in transcriptional regulation. METHODS: Using a yeast two-hybrid assay to screen a HeLa cell cDNA library, we found that TG2 bound BAF250a, a core subunit of the cBAF chromatin remodeling complex, through an interaction between the TG2 barrel 1 and BAF250a C-terminal domains. RESULTS: TG2 was pulled down with a GST-BAF250a C-term fusion protein. Moreover, TG2 and BAF250a were co-fractionated using P11 chromatography, and co-immunoprecipitated. A transamidation reaction showed that TG2 mediated incorporation of polyamine into BAF250a. In glucocorticoid response-element reporter-expressing cells, TG2 overexpression increased the luciferase reporter activity in a transamidation-dependent manner. In addition, a comparison of genome-wide gene expression between wild-type and TG2-deficient primary hepatocytes in response to dexamethasone treatment showed that TG2 further enhanced or suppressed the expression of dexamethasone-regulated genes that were identified by a gene ontology enrichment analysis. CONCLUSION: Thus, our results indicate that TG2 regulates transcriptional activity through BAF250a polyamination.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Aminação , Animais , Células Cultivadas , Proteínas de Ligação a DNA/química , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Células HeLa , Humanos , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase/química , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química
17.
Exp Mol Med ; 53(1): 115-124, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33441971

RESUMO

Glutathione S-transferase (GST) from Schistosoma japonicum has been widely used as a tag for affinity purification and pulldown of fusion proteins to detect protein-protein interactions. However, the reliability of this technique is undermined by the formation of GST-fused protein aggregates after incubation with cell lysates. It remains unknown why this aggregation occurs. Here, we demonstrate that the GST tag is a substrate of transglutaminase 2 (TG2), which is a calcium-dependent enzyme that polyaminates or crosslinks substrate proteins. Mutation analysis identified four glutamine residues in the GST tag as polyamination sites. TG2-mediated modification of the GST tag caused aggregate formation but did not affect its glutathione binding affinity. When incubated with cell lysates, GST tag aggregation was dependent on cellular TG2 expression levels. A GST mutant in which four glutamine residues were replaced with asparagine (GST4QN) exhibited a glutathione binding affinity similar to that of wild-type GST and could be purified by glutathione affinity chromatography. Moreover, the use of GST4QN as a tag reduced fused p53 aggregation and enhanced the induction of p21 transcription and apoptosis in cells treated with 5-fluorouracil (5-FU). These results indicated that TG2 interferes with the protein-protein interactions of GST-fused proteins by crosslinking the GST tag; therefore, a GST4QN tag could improve the reproducibility and reliability of GST pulldown experiments.


Assuntos
Reagentes de Ligações Cruzadas/química , Glutationa Transferase/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Sítios de Ligação , Glutationa Transferase/química , Glutationa Transferase/genética , Células HEK293 , Células HeLa , Humanos , Mutação , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase/química , Proteína 2 Glutamina gama-Glutamiltransferase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo
18.
Graefes Arch Clin Exp Ophthalmol ; 248(6): 811-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20162295

RESUMO

BACKGROUND: It has been suggested that damage of lens epithelial cell (LEC) may play an important role in cataract formation. Nitric oxide is involved in cataract development. Here, we investigated the relationship between LEC damage and iNOS expression in the Zucker diabetic fatty (ZDF) rat. METHODS: At 21 weeks of age, the eyes were enucleated and the lens opacity was then examined. Apoptosis were detected by TUNEL assay, and the expression of iNOS and NF-kappaB activation were studied by immunohistochemistry and southwestern histochemistry respectively. RESULTS: In 21-week-old male ZDF rats, cataract was developed, TUNEL-positive LECs were markedly increased, and the expression levels of iNOS mRNA and protein were significantly upregulated. The expression pattern of iNOS was closely correlated with apoptotic change of LECs. In addition, advanced glycation end products (AGEs) were accumulated in cytoplasm of LECs. Activated NF-kappaB was mainly detected in nucleus of LECs. CONCLUSIONS: The higher expressions of AGEs, NF-kappaB and iNOS in LECs of diabetic rats suggest that these factors are involved in apoptosis of LEC alterations related to diabetic cataract.


Assuntos
Apoptose , Catarata/etiologia , Complicações do Diabetes , Células Epiteliais/patologia , Cristalino/patologia , Animais , Western Blotting , Catarata/metabolismo , Células Epiteliais/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Histocitoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Cristalino/metabolismo , Masculino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Zucker , Regulação para Cima
19.
Cell Death Dis ; 11(4): 301, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355189

RESUMO

Keratinocyte-derived cytokines and chemokines amplify psoriatic inflammation by recruiting IL-17-producing CCR6+ γδT-cells and neutrophils. The expression of these cytokines and chemokines mainly depends on NF-κB activity; however, the pathway that activates NF-κB in response to triggering factors is poorly defined. Here, we show that transglutaminase 2 (TG2), previously reported to elicit a TH17 response by increasing IL-6 expression in a mouse model of lung fibrosis, mediates the upregulation of cytokines and chemokines by activating NF-κB in imiquimod (IMQ)-treated keratinocytes. TG2-deficient mice exhibited reduced psoriatic inflammation in skin treated with IMQ but showed systemic immune responses similar to wild-type mice. Experiments in bone marrow (BM) chimeric mice revealed that TG2 is responsible for promoting psoriatic inflammation in non-BM-derived cells. In keratinocytes, IMQ treatment activated TG2, which in turn activated NF-κB signaling, leading to the upregulation of IL-6, CCL20, and CXCL8 and increased leukocyte migration, in vitro. Consequently, TG2-deficient mice showed markedly decreased CCR6+ γδT-cell and neutrophil infiltration in IMQ-treated skin. Moreover, TG2 levels were higher in psoriatic skin than in normal skin and correlated with IL-6, CXCL8, and CCL20 levels. Therefore, these results indicate that keratinocyte TG2 acts as a critical mediator in the amplification of psoriatic inflammation.


Assuntos
Quimiocina CCL20/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Queratinócitos/metabolismo , Psoríase/genética , Receptores CCR6/metabolismo , Transglutaminases/metabolismo , Animais , Humanos , Inflamação/metabolismo , Camundongos , Proteína 2 Glutamina gama-Glutamiltransferase , Transfecção , Regulação para Cima
20.
Life Sci Alliance ; 3(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32075852

RESUMO

Hypoxia selectively enhances mRNA translation despite suppressed mammalian target of rapamycin complex 1 activity, contributing to gene expression reprogramming that promotes metastasis and survival of cancer cells. Little is known about how this paradoxical control of translation occurs. Here, we report a new pathway that links hypoxia to selective mRNA translation. Transglutaminase 2 (TG2) is a hypoxia-inducible factor 1-inducible enzyme that alters the activity of substrate proteins by polyamination or crosslinking. Under hypoxic conditions, TG2 polyaminated eukaryotic translation initiation factor 4E (eIF4E)-bound eukaryotic translation initiation factor 4E-binding proteins (4EBPs) at conserved glutamine residues. 4EBP1 polyamination enhances binding affinity for Raptor, thereby increasing phosphorylation of 4EBP1 and cap-dependent translation. Proteomic analyses of newly synthesized proteins in hypoxic cells revealed that TG2 activity preferentially enhanced the translation of a subset of mRNA containing G/C-rich 5'UTRs but not upstream ORF or terminal oligopyrimidine motifs. These results indicate that TG2 is a critical regulator in hypoxia-induced selective mRNA translation and provide a promising molecular target for the treatment of cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hipóxia Celular/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fator de Iniciação Eucariótico 4G/genética , Proteínas de Ligação ao GTP/genética , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Fosfoproteínas/genética , Fosforilação , Biossíntese de Proteínas , Proteína 2 Glutamina gama-Glutamiltransferase , Proteômica , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transglutaminases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA