RESUMO
PURPOSE: It is challenging to achieve appropriate target coverage of the prostate with Image Guided Radiation Therapy (IGRT) while simultaneously constraining rectal doses within planned values when there is significant variability in rectal filling and shape. We investigated if rectum planning goals can be fulfilled using rigid CBCT-based on-board alignment to account for interfraction rectal deformations. METHODS: Delivered rectal doses corresponding to prostate alignment ("PR") and anterior rectum alignment ("AR") for 239 daily treatments from 13 patients are reported. Rectal doses were estimated by rigidly mapping the planned dose on the daily CT derived from the daily CBCT according to respective alignment shifts. Rectum V95% (rV95%) was used for analyses. RESULTS: Compared to "PR", "AR" alignment increased rV95% for an average of 34.4% across all patients. rV95% (cc) averaged over all fractions was significant from planning values for 10/13 patients for "PR" and for 9/13 for "AR". 3/13 patients had reproducible anatomy. Of patients with non-reproducible anatomy, three had dosimetrically more favorable, while seven had less favorable anatomies. Most shift differences (82.3%) between the "PR" and "AR" alignments larger than 2 mm resulted in rV95% changes larger than 2 cc. Most shift differences (82.2%) of 2 mm or less between the "PR" and "AR" alignments resulted in rV95% changes less than 2 cc. The average percentage of fractions among patients in which anterior or posterior shifts for "AR" and "PR" alignment was larger than the PTV margins was 9.1% (0.0%-37.5%) and 1.3% (0%-10%). CONCLUSION: Rectal deformation and subsequent inconsistent interfraction separation between prostate and rectal wall translate into anatomical changes that cannot always be mitigated with rigid alignment. If systematic differences exist due to a non-reproducible planning anatomy, attempts to restore the planned rectal doses through anterior rectum alignment produce rather small improvements and may result in unacceptable target underdosage.
Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Masculino , Humanos , Radioterapia Guiada por Imagem/métodos , Próstata/diagnóstico por imagem , Reto , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodosRESUMO
PURPOSE: This study presents a novel and comprehensive framework for evaluating magnetic resonance guided radiotherapy (MRgRT) workflow by integrating the Failure Modes and Effects Analysis (FMEA) approach with Time-Driven Activity-Based Costing (TDABC). We assess the workflow for safety, quality, and economic implications, providing a holistic understanding of the MRgRT implementation. The aim is to offer valuable insights to healthcare practitioners and administrators, facilitating informed decision-making regarding the 0.35T MRIdian MR-Linac system's clinical workflow. METHODS: For FMEA, a multidisciplinary team followed the TG-100 methodology to assess the MRgRT workflow's potential failure modes. Following the mitigation of primary failure modes and workflow optimization, a treatment process was established for TDABC analysis. The TDABC was applied to both MRgRT and computed tomography guided RT (CTgRT) for typical five-fraction stereotactic body RT (SBRT) treatments, assessing total workflow and costs associated between the two treatment workflows. RESULTS: A total of 279 failure modes were identified, with 31 categorized as high-risk, 55 as medium-risk, and the rest as low-risk. The top 20% risk priority numbers (RPN) were determined for each radiation oncology care team member. Total MRgRT and CTgRT costs were assessed. Implementing technological advancements, such as real-time multi leaf collimator (MLC) tracking with volumetric modulated arc therapy (VMAT), auto-segmentation, and increasing the Linac dose rate, led to significant cost savings for MRgRT. CONCLUSION: In this study, we integrated FMEA with TDABC to comprehensively evaluate the workflow and the associated costs of MRgRT compared to conventional CTgRT for five-fraction SBRT treatments. FMEA analysis identified critical failure modes, offering insights to enhance patient safety. TDABC analysis revealed that while MRgRT provides unique advantages, it may involve higher costs. Our findings underscore the importance of exploring cost-effective strategies and key technological advancements to ensure the widespread adoption and financial sustainability of MRgRT in clinical practice.
Assuntos
Imageamento por Ressonância Magnética , Aceleradores de Partículas , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Fluxo de Trabalho , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Radioterapia Guiada por Imagem/métodos , Radiocirurgia/métodos , Aceleradores de Partículas/instrumentação , Imageamento por Ressonância Magnética/métodos , Neoplasias/radioterapia , Tomografia Computadorizada por Raios X/métodos , Análise do Modo e do Efeito de Falhas na Assistência à Saúde , Órgãos em Risco/efeitos da radiaçãoRESUMO
OBJECTIVES: As an alternative to conventional compression amidst the COVID-19 pandemic, we developed a contactless motion management strategy. By increasing the patient's breathing rate to induce shallow breathing with the aid of a metronome, our hypothesis is that the motion magnitude of the target may be minimized without physical contact or compression. METHODS: Fourteen lung stereotactic body radiation therapy (SBRT) patients treated under fast shallow-breathing (FSB) were selected for inclusion in this retrospective study. Our proposed method is called shallow kinetics induced by a metronome (SKIM). We induce FSB by setting the beats-per-minute (BPM) high (typically in the range of 50-60). This corresponded to a patient breathing rate of 25-30 (breathing) cycles per minute. The magnitude of target motion in 3D under SKIM was evaluated using 4DCT datasets. Comparison with free breathing (FB) 4DCT was also made for a subset for which FB data available. RESULTS: The overall effectiveness of SKIM was evaluated with 18 targets (14 patients). Direct comparison with FB was performed with 12 targets (10 patients). The vector norm mean ± SD value of motion magnitude under SKIM for 18 targets was 8.2 ± 4.1 mm. The mean ± SD metronome BPM was 54.9 ± 4.0 in this group. The vector norm means ± SD values of target motion for FB and SKIM in the 12 target sub-group were 14.6 ± 8.5 mm and 9.3 ± 3.7 mm, respectively. The mean ± SD metronome BPM for this sub-group was 56.3 ± 2.5. CONCLUSION: Compared with FB, SKIM can significantly reduce respiratory motion magnitude of thoracic targets. The difference in maximum motion reduction in the overall vector norm, S-I, and A-P directions was significant (p = 0.033, 0.042, 0.011). Our proposed method can be an excellent practical alternative to conventional compression due to its flexibility and ease of implementation.
Assuntos
Neoplasias Pulmonares , Radiocirurgia , Humanos , Estudos Retrospectivos , Pandemias , Movimento (Física) , Respiração , Pulmão , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Radiocirurgia/métodosRESUMO
Serum amyloid A (SAA) is an acute-phase protein produced primarily in the liver that plays a key role in both the initiation and maintenance of inflammation. Rapidly secreted SAA induces neutrophilia at inflammatory sites, initiating inflammation and inducing the secretion of various cytokines, including TNF-α, IL-6, and IL-17. IL-17 is expressed in several inflammatory cells, including innate immune cells such as γδT cells, ILC3 cells, and neutrophils. Increased IL-17 levels exacerbate various inflammatory diseases. Among other roles, IL-17 induces bone loss by increasing receptor activator of nuclear factor-κB ligand (RANKL) secretion, which stimulates osteoclast differentiation. Several studies have demonstrated that chronic inflammation induces bone loss, suggesting a role for SAA in bone health. To test this possibility, we observed an increase in IL-17-producing innate immune cells, neutrophils, and γδT cells in these mice. In 6-month-old animals, we detected increased osteoclast-related gene expression and IL-17 expression in bone lysates. We also observed an increase in neutrophils that secreted RANKL in the bone marrow of TG mice. Finally, we demonstrated decreased bone mineral density in these transgenic (TG) mice. Our results revealed that the TG mice have increased populations of IL-17-producing innate immune cells, γδT cells, and neutrophils in TG mice. We additionally detected increased RANKL and IL-17 expression in the bone marrow of 6-month-old TG mice. Furthermore, we confirmed significant increases in RANKL-expressing neutrophils in TG mice and decreased bone mineral density. Our results provide evidence that chronic inflammation induced by SAA1 causes bone loss via IL-17-secreting innate immune cells.
Assuntos
Densidade Óssea , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Interleucina-17/biossíntese , Fígado/metabolismo , Proteína Amiloide A Sérica/genética , Animais , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Osteoclastos/metabolismoRESUMO
PURPOSE: The 4D computed tomography (CT) simulation is an essential procedure for tumors exhibiting breathing-induced motion. However, to date there are no established guidelines to assess the characteristics of existing systems and to describe meaningful performance. We propose a commissioning quality assurance (QA) protocol consisting of measurements and acquisitions that assess the mechanical and computational operation for 4D CT with both phase and amplitude-based reconstructions, for regular and irregular respiratory patterns. METHODS: The 4D CT scans of a QUASAR motion phantom were acquired for both regular and irregular breathing patterns. The hardware consisted of the Canon Aquilion Exceed LB CT scanner used in conjunction with the Anzai laser motion monitoring system. The nominal machine performance and reconstruction were demonstrated with measurements using regular breathing patterns. For irregular breathing patterns the performance was quantified through the analysis of the target motion in the superior and inferior directions, and the volume of the internal target volume (ITV). Acquisitions were performed using multiple pitches and the reconstructions were performed using both phase and amplitude-based binning. RESULTS: The target was accurately captured during regular breathing. For the irregular breathing, the measured ITV exceeded the nominal ITV parameters in all scenarios, but all deviations were less than the reconstructed slice thickness. The mismatch between the nominal pitch and the actual breathing rate did not affect markedly the size of the ITV. Phase and normalized amplitude binning performed similarly. CONCLUSIONS: We demonstrated a framework for measuring and quantifying the initial performance of 4D CT simulation scans that can also be applied during periodic QAs. The regular breathing provided confidence that the hardware and the software between the systems performs adequately. The irregular breathing data suggest that the system may be expected to capture in excess the target motion and geometry, but the deviation is expected to be within the slice thickness.
Assuntos
Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares , Humanos , Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/patologia , Imagens de Fantasmas , Respiração , Movimento (Física) , Planejamento da Radioterapia Assistida por Computador/métodosRESUMO
BACKGROUND: The root bark of Dictamnus dasycarpus Turcz. has been successfully used for the treatment of inflammatory skin conditions such as eczema and pruritus. However, the anti-psoriatic effect of this plant has not until now been investigated. METHODS: The aim of this project was to investigate whether a methanol extract of Dictamnus dasycarpus Turcz. root bark (MEDD) can be used as a therapeutic agent for psoriasis in C57BL/6 mice model of imiquimod (IMQ)-induced psoriasis. IMQ and MEDD was applied to mouse skin continuously for 7 days. The skin phenotype and the levels of inflammatory cytokines, such as interferon (IFN)-γ and interleukin (IL)-17, were analyzed. The immune cell population was determined by flow cytometry, and STAT1 and 3 protein levels were measured. RESULTS: An alleviation of scaly skin phenotype, immune cell infiltration in the dermis, and epidermal hyperplasia was observed after daily MEDD treatment in the lesion-affected area. It was also found that MEDD reduced IL-17 cytokine levels decreased by 44.37% (p < 0.05), the number of IL-17-producing Th17 cells and γδT cells, and the size of the Th1 population secreting IFN-γ decreased by 45.98, 62.21, and 44.42%, respectively (p < 0.05), compared with the vehicle control group. STAT3 signals, associated with IL-17 are also reduced by MEDD. CONCLUSIONS: An anti-psoriatic effect of MEDD was observed, as determined by decreased skin inflammation, reduced number of inflammatory cytokines, and a smaller population of inflammatory cells. These results contribute to the validation of the use of MEDD in the treatment of psoriasis.
Assuntos
Anti-Inflamatórios/farmacologia , Dictamnus , Imiquimode/efeitos adversos , Extratos Vegetais/farmacologia , Psoríase , Animais , Citocinas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Casca de Planta/química , Psoríase/induzido quimicamente , Psoríase/metabolismo , Fator de Transcrição STAT3/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Linfócitos T Auxiliares-IndutoresRESUMO
PURPOSE: The aim of this study was to investigate the intra-fractional patient motion using the ExacTrac system in LINAC-based stereotactic radiosurgery (SRS). METHOD: A retrospective analysis of 104 SRS patients with kilovoltage image-guided setup (Brainlab ExacTrac) data was performed. Each patient was imaged pre-treatment, and at two time points during treatment (1st and 2nd mid-treatment), and bony anatomy of the skull was used to establish setup error at each time point. The datasets included the translational and rotational setup error, as well as the time period between image acquisitions. After each image acquisition, the patient was repositioned using the calculated shift to correct the setup error. Only translational errors were corrected due to the absence of a 6D treatment table. Setup time and directional shift values were analyzed to determine correlation between shift magnitudes as well as time between acquisitions. RESULTS: The average magnitude translation was 0.64 ± 0.59 mm, 0.79 ± 0.45 mm, and 0.65 ± 0.35 mm for the pre-treatment, 1st mid-treatment, and 2nd mid-treatment imaging time points. The average time from pre-treatment image acquisition to 1st mid-treatment image acquisition was 7.98 ± 0.45 min, from 1st to 2nd mid-treatment image was 4.87 ± 1.96 min. The greatest translation was 3.64 mm, occurring in the pre-treatment image. No patient had a 1st or 2nd mid-treatment image with greater than 2 mm magnitude shifts. CONCLUSION: There was no correlation between patient motion over time, in direction or magnitude, and duration of treatment. The imaging frequency could be reduced to decrease imaging dose and treatment time without significant changes in patient position.
Assuntos
Neoplasias Encefálicas/cirurgia , Imageamento Tridimensional/métodos , Posicionamento do Paciente , Radiocirurgia/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Estudos RetrospectivosRESUMO
The anterior cingulate cortex (ACC) is known for its role in perception of nociceptive signals and the associated emotional responses. Recent optogenetic studies, involving modulation of neuronal activity in the ACC, show that the ACC can modulate mechanical hyperalgesia. In the present study, we used optogenetic techniques to selectively modulate excitatory pyramidal neurons and inhibitory interneurons in the ACC in a model of chronic inflammatory pain to assess their motivational effect in the conditioned place preference (CPP) test. Selective inhibition of pyramidal neurons induced preference during the CPP test, while activation of parvalbumin (PV)-specific neurons did not. Moreover, chemogenetic inhibition of the excitatory pyramidal neurons alleviated mechanical hyperalgesia, consistent with our previous result. Our results provide evidence for the analgesic effect of inhibition of ACC excitatory pyramidal neurons and a prospective treatment for chronic pain.
RESUMO
As flattening filter-free (FFF) photon beams become readily available for treat-ment delivery in techniques such as SBRT, thorough investigation of skin dose from FFF photon beams is necessary under clinically relevant conditions. Using a parallel-plate PTW Markus chamber placed in a custom water-equivalent phantom, surface-dose measurements were taken at 2 × 2, 3 × 3, 4 × 4, 6 × 6, 8 × 8, 10 × 10, 20 × 20, and 30 × 30 cm2 field sizes, at 80, 90, and 100 cm source-to-surface distances (SSDs), and with fields defined by jaws and multileaf collimator (MLC) using multiple beam energies (6X, 6XFFF, 10X, and 10XFFF). The same set of measurements was repeated with the chamber at a reference depth of 10cm. Each surface measurement was normalized by its corresponding reference depth measurement for analysis. The FFF surface doses at 100 cm SSD were higher than flattened surface doses by 45% at 2 × 2 cm2 to 13% at 20 × 20 cm2 for 6MV energy. These surface dose differences varied to a greater degree as energy increased, ranging from +63% at 2 × 2 cm2 to -2% at 20 × 20 cm2 for 10 MV. At small field sizes, higher energy increased FFF surface dose relative to flattened surface dose; while at larger field sizes, relative FFF surface dose was higher for lower energies. At both energies investigated, decreasing SSD caused a decrease in the ratios of FFF-to-flattened surface dose. Variability with SSD of FFF-to-flattened surface dose differences increased with field size and ranged from 0% to 6%. The field size at which FFF and flattened beams gave the same skin dose increased with decreasing beam energy. Surface dose was higher with MLC fields compared to jaw fields under most conditions, with the difference reaching its maximum at a field size between 4 × 4 cm2 and 6 × 6 cm2 for a given energy and SSD. This study conveyed the magnitude of surface dose in a clinically meaning-ful manner by reporting results normalized to 10 cm depth dose instead of depth of dose maximum.
Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Pele/efeitos da radiação , Filtração/instrumentação , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , ÁguaRESUMO
The aim of this study is to develop a new method to align the patient setup lasers in a radiation therapy treatment room and examine its validity and efficiency. The new laser alignment method is realized by a device composed of both a metallic base plate and a few acrylic transparent plates. Except one, every plate has either a crosshair line (CHL) or a single vertical line that is used for alignment. Two holders for radiochromic film insertion are prepared in the device to find a radiation isocenter. The right laser positions can be found optically by matching the shadows of all the CHLs in the gantry head and the device. The reproducibility, accuracy, and efficiency of laser alignment and the dependency on the position error of the light source were evaluated by comparing the means and the standard deviations of the measured laser positions. After the optical alignment of the lasers, the radiation isocenter was found by the gantry and collimator star shots, and then the lasers were translated parallel to the isocenter. In the laser position reproducibility test, the mean and standard deviation on the wall of treatment room were 32.3 ± 0.93 mm for the new method whereas they were 33.4 ± 1.49 mm for the conventional method. The mean alignment accuracy was 1.4 mm for the new method, and 2.1 mm for the conventional method on the walls. In the test of the dependency on the light source position error, the mean laser position was shifted just by a similar amount of the shift of the light source in the new method, but it was greatly magnified in the conventional method. In this study, a new laser alignment method was devised and evaluated successfully. The new method provided more accurate, more reproducible, and faster alignment of the lasers than the conventional method.
Assuntos
Lasers/normas , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Humanos , Radioterapia de Intensidade ModuladaRESUMO
One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.
Assuntos
Simulação por Computador , Movimento/efeitos da radiação , Neoplasias/radioterapia , Radioterapia/efeitos adversos , Algoritmos , Humanos , Modelos Teóricos , Método de Monte Carlo , Movimento/fisiologia , Neoplasias/fisiopatologia , Imagens de Fantasmas , Terapia por Radiofrequência , Dosagem RadioterapêuticaRESUMO
In radiotherapy, only a few immobilization systems, such as open-face mask and head mold with a bite plate, are available for claustrophobic patients with a certain degree of discomfort. The purpose of this study was to develop a remote-controlled and self-contained audiovisual (AV)-aided interactive system with the iPad mini with Retina display for intrafractional motion management in brain/H&N (head and neck) radiotherapy for claustrophobic patients. The self-contained, AV-aided interactive system utilized two tablet computers: one for AV-aided interactive guidance for the subject and the other for remote control by an operator. The tablet for audiovisual guidance traced the motion of a colored marker using the built-in front-facing camera, and the remote control tablet at the control room used infrastructure Wi-Fi networks for real-time communication with the other tablet. In the evaluation, a programmed QUASAR motion phantom was used to test the temporal and positional accuracy and resolution. Position data were also obtained from ten healthy volunteers with and without guidance to evaluate the reduction of intrafractional head motion in simulations of a claustrophobic brain or H&N case. In the phantom study, the temporal and positional resolution was 24 Hz and 0.2 mm. In the volunteer study, the average superior-inferior and right-left displacement was reduced from 1.9 mm to 0.3 mm and from 2.2 mm to 0.2 mm with AV-aided interactive guidance, respectively. The superior-inferior and right-left positional drift was reduced from 0.5 mm/min to 0.1 mm/min and from 0.4 mm/min to 0.04 mm/min with audiovisual-aided interactive guidance. This study demonstrated a reduction in intrafractional head motion using a remote-controlled and self-contained AV-aided interactive system of iPad minis with Retina display, easily obtainable and cost-effective tablet computers. This approach can potentially streamline clinical flow for claustrophobic patients without a head mask and also allows patients to practice self-motion management before radiation treatment delivery.
Assuntos
Recursos Audiovisuais , Biorretroalimentação Psicológica/instrumentação , Neoplasias de Cabeça e Pescoço/radioterapia , Imobilização/instrumentação , Transtornos Fóbicos/enfermagem , Telemedicina/instrumentação , Adulto , Biorretroalimentação Psicológica/métodos , Computadores de Mão , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Imobilização/métodos , Masculino , Movimento (Física) , Interface Usuário-ComputadorRESUMO
Dose painting radiotherapy is considered a promising radiotherapy technology that enables more targeted dose delivery to tumor rich regions while saving critical normal tissues. Obviously, dose painting planning would be more complicated and hard to be evaluated with current plan quality index systems that were developed under the paradigm of uniform dose prescription. In this study, we introduce a new plan quality index, named "index of achievement (IOA)" that assesses how close the planned dose distribution is to the prescribed one in a dose painting radiotherapy plan. By using voxel-based comparison between planned and prescribed dose distributions in its formulation, the index allows for a single-value evaluation regardless of the number of prescribed dose levels, which cannot be achieved with the conventional indices such as conventional homogeneity index. Benchmark calculations using patient data demonstrated feasibility of the index not only for contour-based dose painting plans, but also for dose painting by numbers plans. Also, it was shown that there is strong correlation between the new index and conventional indices, which indicates a potential of the new index as an alternative to conventional ones in general radiotherapy plan evaluation.
Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Nasofaríngeas/radioterapia , Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Estudos de Viabilidade , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem RadioterapêuticaRESUMO
Purpose: Standardization of x-ray cabinet irradiator dose, geometry, and calibration reporting is an ongoing process. Multi-tube designs have been introduced into the preclinical market and give a theoretical benefit but have not been widely assessed for use in preclinical irradiation conditions. The aim of this study was to report our experience commissioning a dual x-ray source cabinet irradiator (CIXD, Xstrahl Limited, United Kingdom) and assess the dose distribution for various experimental conditions. Methods and Materials: Half-value layer (HVL) measurement, profile measurements, and output calibration were performed using a calibrated ion chamber. Constancy measurements were performed twice daily over 2 weeks to assess output fluctuations. Film measurements were completed using solid water to assess percent depth dose and homogeneity within the field and within variable thicknesses of solid water and phosphate-buffered saline solution. Film measurements were repeated for various arrangements of petri dishes filled with phosphate-buffered saline or water and in a 3D-printed mouse phantom. Results: The x-ray tubes had a measured in-air output of 1.27 Gy/min. The HVL was 1.7 mm Cu. The upper and lower tubes both exhibited the heel effect, but when operated simultaneously, the effect was reduced. Ion chamber measurements revealed a 15% dose inhomogeneity within the tray area (18 × 18 cm2). Film measurements in the petri dishes indicated minor nonuniformities in the arrangements of the experimental apparatus. Measurements from the mouse phantom with film agreed with ion chamber measurements for various phantom placements and orientations. Conclusions: X-ray cell culture and animal irradiation with dual tube cabinet irradiation is efficient and robust when using established dosimetric tools to confirm output and homogeneity. The conditions assumed for calibrations are often not maintained during experiments. We have confirmed that inhomogeneities are present for single-tube use; however, they are reduced with simultaneous tube use. Additional dosimetric monitoring should be performed for each unique irradiation setup.
RESUMO
BACKGROUND: It is not unusual to see some parts of tissues are excluded in the field of view of CT simulation images. A typical mitigation is to avoid beams entering the missing body parts at the cost of sub-optimal planning. METHODS: This study is to solve the problem by developing 3 methods, (1) deep learning (DL) mechanism for missing tissue generation, (2) using patient body outline (PBO) based on surface imaging, and (3) hybrid method combining DL and PBO. The DL model was built upon a Globally and Locally Consistent Image Completion to learn features by Convolutional Neural Networks-based inpainting, based on Generative Adversarial Network. The database used comprised 10,005 CT training slices of 322 lung cancer patients and 166 CT evaluation test slices of 15 patients. CT images were from the publicly available database of the Cancer Imaging Archive. Since existing data were used PBOs were acquired from the CT images. For evaluation, Structural Similarity Index Metric (SSIM), Root Mean Square Error (RMSE) and Peak signal-to-noise ratio (PSNR) were evaluated. For dosimetric validation, dynamic conformal arc plans were made with the ground truth images and images generated by the proposed method. Gamma analysis was conducted at relatively strict criteria of 1%/1 mm (dose difference/distance to agreement) and 2%/2 mm under three dose thresholds of 1%, 10% and 50% of the maximum dose in the plans made on the ground truth image sets. RESULTS: The average SSIM in generation part only was 0.06 at epoch 100 but reached 0.86 at epoch 1500. Accordingly, the average SSIM in the whole image also improved from 0.86 to 0.97. At epoch 1500, the average values of RMSE and PSNR in the whole image were 7.4 and 30.9, respectively. Gamma analysis showed excellent agreement with the hybrid method (equal to or higher than 96.6% of the mean of pass rates for all scenarios). CONCLUSIONS: It was first demonstrated that missing tissues in simulation imaging could be generated with high similarity, and dosimetric limitation could be overcome. The benefit of this study can be significantly enlarged when MR-only simulation is considered.
Assuntos
Aprendizado de Máquina , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Redes Neurais de Computação , Radiometria , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodosRESUMO
Maintaining epidermal homeostasis relies on a tightly organized process of proliferation and differentiation of keratinocytes. While past studies have primarily focused on calcium regulation in keratinocyte differentiation, recent research has shed light on the crucial role of lysosome dysfunction in this process. TLR adaptor interacting with SLC15A4 on the lysosome (TASL) plays a role in regulating pH within the endo-lysosome. However, the specific role of TASL in keratinocyte differentiation and its potential impact on proliferation remains elusive. In our study, we discovered that TASL deficiency hinders the proliferation and migration of keratinocytes by inducing G1/S cell cycle arrest. Also, TASL deficiency disrupts proper differentiation process in TASL knockout human keratinocyte cell line (HaCaT) by affecting lysosomal function. Additionally, our research into calcium-induced differentiation showed that TASL deficiency affects calcium modulation, which is essential for keratinocyte regulation. These findings unveil a novel role of TASL in the proliferation and differentiation of keratinocytes, providing new insights into the intricate regulatory mechanisms of keratinocyte biology.
Assuntos
Cálcio , Diferenciação Celular , Proliferação de Células , Peptídeos e Proteínas de Sinalização Intracelular , Queratinócitos , Lisossomos , Humanos , Cálcio/metabolismo , Linhagem Celular , Movimento Celular , Queratinócitos/metabolismo , Queratinócitos/citologia , Lisossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismoRESUMO
The purpose of this study was to introduce a planning strategy for dynamic conformal arc therapy (DCAT), named negative margin technique (NMT), and evaluate its dosimetric gain in lung stereotactic body radiation therapy (SBRT). In DCAT, the field aperture is continuously conformed to the planning target volume (PTV) with an aperture margin (AM) to compensate for the penumbra effect with gantry rotation. It is a common belief the AM should be positive (or at least 'zero'). However, the radial penumbra width becomes significantly wider because of continuously overlapped beams in arc delivery. Therefore, we hypothesize if the 'negative margin' is applied in the radial direction, it would improve the PTV dose conformation while reducing normal tissue dose. For verification, trial plans were made using the NMT and compared with 'zero margin (ZM)' plans for five lung SBRT cases representing different situations depending on the location of the PTV and organs at risk. All plans met 95% PTV coverage with the prescription dose and spared the spinal cord below the tolerance. Two conventional conformation indices (the ratio of prescription isodose volume to the PTV (CI100) and the ratio of 50% prescription isodose volume to the PTV (CI50)) and a modified conformation index were investigated. The maximum dose at 2 cm from the PTV (Dmax-2cm) and the percent of lung volume receiving 20 Gy (V20) were also evaluated. Another planning simulation was performed with a total of ten randomly selected lung SBRT cases to mimic actual practice. In this simulation, optimization with ZM was first performed and further optimization using the NMT was processed for cases that could not meet a goal of CI100 = 1.2 with the ZM optimization. In all cases, both the CI100 and CI50 values were significantly reduced (overall, 9.4% ± 4.1% and 5.9%± 3.1% for CI100 and CI50, respectively). The modified conformation index values also showed similar improvement (overall, 10.1% ± 5.7% increase). Reduction of Dmax-2cm was also observed in all cases (4.5% ± 2.2%). V20 values decreased in all cases but one (5.7% ± 3.9%, excluding the increased case). In the random group simulation, it was possible to achieve the goal with just one NMT trial for five out of six cases that did not meet the goal in the ZM optimization. Interestingly, however, one case needed as many as six iterations to get the CI100 = 1.2 goal. The NMT turned out to be an effective planning strategy that could bring significant improvement of dose conformation. The NMT can be easily implemented in most clinics with no prerequisite.
Assuntos
Neoplasias Pulmonares/cirurgia , Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Algoritmos , Humanos , Órgãos em Risco , Imagens de Fantasmas , Dosagem RadioterapêuticaRESUMO
Background: Oral cancer is one of the most prevalent malignant tumors worldwide. Silibinin has been reported to exert therapeutic effects in various cancer models. However, its mechanism of action in oral cancer remains unclear. We aimed to examine the molecular processes underlying the effects of silibinin in oral cancer in vitro and in vivo as well as its potential anticancer effects. Next, we investigated the molecular processes underlying both in vitro and in vivo outcomes of silibinin treatment on oral cancer. Methods: To investigate the effects of silibinin on the growth of oral cancer cells, cell proliferation and anchorage-independent colony formation tests were conducted on YD10B and Ca9-22 oral cancer cells. The effects of silibinin on the migration and invasion of oral cancer cells were evaluated using transwell assays. Flow cytometry was used to examine apoptosis, cell cycle distribution, and accumulation of reactive oxygen species (ROS). The molecular mechanism underlying the anticancer effects of silibinin was explored using immunoblotting. The in vivo effects of silibinin were evaluated using a Ca9-22 xenograft mouse model. Results: Silibinin effectively suppressed YD10B and Ca9-22 cell proliferation and colony formation in a dose-dependent manner. Moreover, it induced cell cycle arrest in the G0/G1 phase, apoptosis, and ROS generation in these cells. Furthermore, silibinin inhibited the migration and invasion abilities of YD10B and Ca9-22 cells by regulating the expression of proteins involved in the epithelial-mesenchymal transition. Western blotting revealed that silibinin downregulated SOD1 and SOD2 and triggered the JNK/c-Jun pathway in oral cancer cells. Silibinin significantly inhibited xenograft tumor growth in nude mice, with no obvious toxicity. Conclusions: Silibinin considerably reduced the development of oral cancer cells by inducing apoptosis, G0/G1 arrest, ROS generation, and activation of the JNK/c-Jun pathway. Importantly, silibinin effectively suppressed xenograft tumor growth in nude mice. Our findings indicate that silibinin may be a promising option for the prevention or treatment of oral cancer.
RESUMO
PURPOSE: To investigate dose perturbations for pacemaker-implanted patients in partial breast irradiation using high dose rate (HDR) balloon brachytherapy. METHODS: Monte Carlo (MC) simulations were performed to calculate dose distributions involving a pacemaker in Ir-192 HDR balloon brachytherapy. Dose perturbations by varying balloon-to-pacemaker distances (BPD = 50 or 100 mm) and concentrations of iodine contrast medium (2.5%, 5.0%, 7.5%, and 10.0% by volume) in the balloon were investigated for separate parts of the pacemaker (i.e., battery and substrate). Relative measurements using an ion-chamber were also performed to confirm MC results. RESULTS: The MC and measured results in homogeneous media without a pacemaker agreed with published data within 2% from the balloon surface to 100 mm BPD. Further their dose distributions with a pacemaker were in a comparable agreement. The MC results showed that doses over the battery were increased by a factor of 3, compared to doses without a pacemaker. However, there was no significant dose perturbation in the middle of substrate but up to 70% dose increase in the substrate interface with the titanium capsule. The attenuation by iodine contrast medium lessened doses delivered to the pacemaker by up to 9%. CONCLUSIONS: Due to inhomogeneity of pacemaker and contrast medium as well as low-energy photons in Ir-192 HDR balloon brachytherapy, the actual dose received in a pacemaker is different from the homogeneous medium-based dose and the external beam-based dose. Therefore, the dose perturbations should be considered for pacemaker-implanted patients when evaluating a safe clinical distance between the balloon and pacemaker.
Assuntos
Artefatos , Braquiterapia/métodos , Eletrodos Implantados , Marca-Passo Artificial , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Reprodutibilidade dos TestesRESUMO
Purpose: Thermoplastic masks keep patients in an appropriate position to ensure accurate radiation delivery. For a thermoplastic mask to maintain clinical efficacy, the mask should wrap the patient's surface properly and provide uniform pressure to all areas. However, to our best knowledge, no explicit method for achieving such a goal currently exists. Therefore, in this study, we intended to develop a real-time thermoplastic mask compression force (TMCF) monitoring system to measure compression force quantitatively. A prototype system was fabricated, and the feasibility of the proposed method was evaluated. Methods: The real-time TMCF monitoring system basically consists of four force sensor units, a microcontroller board (Arduino Bluno Mega 2560), a control PC, and an in-house software program. To evaluate the reproducibility of the TMCF monitoring system, both a reproducibility test using a micrometer and a setup reproducibility test using a head phantom were performed. Additionally, the reproducibility tests of mask setup and motion detection tests were carried out with a cohort of six volunteers. Results: The system provided stable pressure readings in all 10 trials during the sensor unit reproducibility test. The largest standard deviation (SD) among trials was about 36 gf/cm2 (â¼2.4% of the full-scale range). For five repeated mask setups on the phantom, the compression force variation of the mask was less than 39 gf/cm2 (2.6% of the full-scale range). We were successful in making masks together with the monitoring system connected and demonstrated feasible utilization of the system. Compression force variations were observed among the volunteers and according to the location of the sensor (among forehead, both cheekbones, and chin). The TMCF monitoring system provided the information in real time on whether the mask was properly pressing the human subject as an immobilization tool. Conclusion: With the developed system, it is possible to monitor the effectiveness of the mask in real time by continuously measuring the compression force between the mask and patient during the treatment. The graphical user interface (GUI) of the monitoring system developed provides a warning signal when the compression force of the mask is insufficient. Although the number of volunteers participated in the study was small, the obtained preliminary results suggest that the system could ostensibly improve the setup accuracy of a thermoplastic mask.